Ergodic properties of Rauzy—Veech inductions

Charles Fougeron

Abstract

We introduce a unified description of Rauzy—Veech induction on interval ex-
changes and linear involutions with or without flips using simplicial systems. This
enables us to give a new straightforward and common proof of the existence and
uniqueness (corresponding to Masur—Veech measure) of the measure of maximal
entropy for Teichmiiller flow on abelian and quadratic differentials strata. Other
dynamical consequences imply a central limit theorem generalizing to Bufetov’s as
well as a key ingredient for Avila-Gouezel-Yoccoz and Avila-Resende proof of ex-
ponential mixing of Teichmiiller flow.

For interval exchanges and linear involutions with flips we obtain the existence of
a periodic subinterval for almost every parameters as well as an upper bound on the
Hausdorff dimension of the complementary set of such parameters. This strength-
ens the results of Nogueira, Danthony—Nogueira and Skripchenko—Troubetzkoy and
introduce an analog of Veech flow in this cases which should conjecturally be con-
jugated to Teichmiiller flow on (non-generic) measured foliation without closed one-
sided leaves.
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1 Introduction

In the study of dynamics of measured foliations on surfaces, a natural idea — going
back at least to Poincaré — when the objects are oriented is to consider its first
return map to a transverse interval. Such maps, as they preserve a measure, are
locally translations with finitely many domains of continuity. It thus produces a map
which divides the interval in a finite number of pieces and permutes them hence such
maps bear the name of interval exchanges transformations.

Another seminal idea to understand these objects, which boomed in the 70’s and
the work of Feigenbaum, is renormalization. It was used in the early 80’s by Masur
and Veech simultaneously and independently to prove the first ergodic properties of
measure foliations. Veech used a renormalization directly on the interval exchange
transformation, called Rauzy—Veech induction. It consists in associating to an inter-
val exchange map its first return map a well chosen subinterval, such that the new
map has the same number of interval domains. Thus creating a sequence of IET
from an initial one. Renormalization idea, uses the fact that the dynamics of one
interval exchange can be better understood by describing this sequence.

In another perspective, this renormalization can be interpreted has a first return
map of a deformation flow on the moduli space of measured foliations on surfaces
and their natural extension, translation surfaces. This flow is commonly called Te-
ichmiiller flow. Masur and Veech introduced an invariant finite measure equivalent
to Lebesgue measure and showed its ergodicity with respect to the renormalization
map.

Many ergodic results in the field have used this technique ever since. Let us men-
tion here a very partial list : The unique ergodicity of almost every measured folia-
tion [Ker85], Central limit theorem [Buf06], Exponential mixing [AGY06], Existence
and uniqueness of a measure of maximal entropy [BG11], Hausdorff codimension of
non-uniquely ergodic measured foliations [CM20].

Orientable surfaces A rule of thumb in the field states that the ergodic prop-
erties of Teichmiiller flow on the moduli space of translation surfaces can be trans-
posed to the Teichmiiller flow on the moduli space of half-translations surfaces,
corresponding in our setting to non-orientable foliations on orientable surfaces.

The proofs usually turn out to have similar schemes but with many specific
technicalities appearing in the way.



The analog of interval exchange transformation in this context was introduced
by Danthony—Nogueira in [DN90]. They coined it Linear Involution, since it is not a
map, but involves an involution switching two intervals. This was used for instance
by Avila—Resende in [AR12] to prove Exponential mixing in this case.

Nonetheless the more technical nature of the proofs together with the fact that
it does not seem to produce original behaviours for many of these results makes the
subject to be under consideration. Several of the ergodic properties for orientable
measured foliations have never been proved in the case of non-orientable ones.

In the following work, we introduced a unifying formalism, taken from a com-
panion work [Fou24a), which enable us to give common proofs for both these cases
as well as new insights on each of them. This part of a more general work which
introduces a formalism and techniques to study such maps with a probabilistic ap-
proach by random walk ideas. As consequence, we are able to revisit Masur—Veech
result, proving exponential tail property for Teichmiiller flow in these two settings.

In particular we get a generalization of Bufetov—Gurevich results.

Theorem I. The Masur—Veech measure is the unique measure of mazximal entropy
for the Teichmiiller flow on strata of abelian and quadratic differentials with area 1.
Its entropy is equal to d = 2g +n — 1, i.e. the complex dimension of the stratum
before normalization.

The formula for the entropy was claimed by Kontsevich in [Kon97] up to adapting
Pesin theory in this context.

Another consequence is a Central Limit theorem for non-orientable foliations
(Theorem generalizing Bufetov theorem [Buf06] on orientable foliations. More-
over, this work also covers in a common framework the proof of exponential tail prop-
erty in both this cases, giving a common framework for proving this key ingredient
of exponential mixing of the Teichmiiller flow.

Non-orientable surfaces It was noticed by Nogueira [Nog89] and latter by
Danthony—Nogueira [DN90] that the generic dynamics of measured foliations on
non-orientable surfaces is of completely different nature as in the orientable case.
Far from being uniquely ergodic, they are expected to contain a Mobius strip, i.e.
a union of non-orientable closed leaves of positive measure.

Their proof relies on another generalization of interval exchange, introducing
flips, intervals on which the map reverses orientation, locally —id composed with a
translation. It is also possible to generalize it to linear involution with flips. All
these objects will be defined precisely in Section

More recently, Skripchenko—Troubetzkoy [STI8| gave a proof that the set of
parameters for which interval exchanges with flips do not contain a periodic orbit
have Hausdorff dimension strictly smaller that the dimension of its ambiant space.
These three works all rely on a conditioning argument on this subspace that they
intend to prove is of zero measure. The definition of this conditioning thus comes
with an important gap. We propose a way to fill in this gap and generalize the result
to linear involutions.

Theorem II. Consider the set of length parameter for interval exchanges (resp. lin-
ear involution) with flips. The subset of interval exchanges (resp. linear involutions)
which do not contain a Mobius strip is of Hausdorff dimension strictly smaller than
the dimension of the total set.



2 Definitions

2.1 Win-lose induction

Let G = (V, E) denote a graph labeled on an alphabet A by a function ! : £ — A
such that all vertex v € V has either zero or two outgoing edges with distinct labels..
Moreover, for every v € V, the restriction of [ to E,, the set of edges going out of v,
is assumed to be injective.

Let VO be the set of vertices in V with no outgoing edges. A vertex v in V \ V°
has by assumption two outgoing edges e, f respectively labeled by «, 8 € A. The
subcones

ice::{AeRf\Aa<,\5} and ICf::{AeRﬁ|)\5<)\a}

form a partition of Rﬁ where Ry = {# € R |z > 0}. They have the same boundary
set thus depending only on the vertex v

H = {AeRY | da=As}.
Additionally, we associate matrices
M. :=1d +FEg,o and M;:=1d +Fq3.

Where F, ; is the elementary matrix with coefficient 1 at row a and column b. Such
that K¢ = M. ~]Rj§ and K/ = M; - Rf. Hence it is natural to define

5. - Ko — RP
1l A = MIE

The win-lose induction associated to the graph G is the map
©: (V\V?) xR} - V xRy

defined for every edge e from vertices v to v’ and all A € K¢ by O(v, \) = (v, ©(N)) .

Remark 2.1. The map is only defined on

|| REI\H°

veV\VO

but we make this abuse of notation for clarity, since these hyperplanes will not play
a role in the Lebesgue generic dynamical behaviour nor the Hausdorff dimensions we
will estimate.

Consider a vertex v with two or more outgoing edges and a parameter \ € ]Rf.
In analogy with Rauzy—Veech induction (for an introduction, refer to [Yocl0]), we
call the edge e such that A € K¢ the loser. Conversely, the labels of any other edge
e’ in E, is called a winner, and we say it wins against e. We sometimes say a label
wins or loses when there is no ambiguity to which edge they correspond.

The map © can be characterized as follows: it compares the coordinates of all
edges emanating from a given vertex v on the vector and subtracts the smallest
coordinate from the others, effectively subtracting the losing coordinate from the
winning ones.



Remark 2.2. In the following, we denote an edge by its label when there is no
ambiguity. Using for instance K% instead of K°.

Let us consider the projectivization relation x ~ Az satisfied for all A\ € Ry and
z € RY. We denote by A := R}'/ ~ the simplex of dimension |A| — 1 and, for
each v € V, by {Ac}eep, its induced partition by {K“} . . The maps ©. can
be quotiented by this relation and we denote the induced map by T. : A, — A.
Similarly, © induces a map on space A(G) :=V x A denoted by T : A(G) — A(G).

Ay
Figure 1: Action of T, on A,

Remark 2.3. Classically (see [YocI0]), Rauzy—Veech induction is represented with
its Rauzy diagram, a graph with vertices labeled with the corresponding interval ez-
change permutation which edges are labeled by top of bottom depending on which
interval wins in the induction and points to the corresponding new permutation. As
a win-lose induction, we prefer to label the edges by the losing label. In Figure[d, we
represent Rauzy diagram for a 3-IET with the labeling of its corresponding win-lose
induction.

3 1
/\ /_\

1 2 3
3 2 1

\_/ \/
2 2
Figure 2: Rauzy diagram for 3-IET.

2.1.1 Linear subspace restriction

Let {¢s}vev be a family of preserved linear forms, i.e. satisfying ¢.,(x) = ¢,/ (z')
for all v,v’ € V and z,z" € A such that T'(v,x) = (v',2').

Let us denote by A% the convex polytope P (]Ri‘ Nker ¢, ) and V? the set of vertices
v such that A? has same dimension as ker ¢. Together with edges between vertices
in V' this defines a subgraph G® of G such that a path associated to parameters in
A? remains in G. In particular, it induces a restricted map on

AGY) = || A7
veV P

denoted by T? : A(G®) — A(G?).



Such restrictions will be of main interest here to study dynamics of linear invo-
lutions. Indeed, for linear involutions, there exists a generalization of Rauzy—Veech
induction which is constrained by the condition that top and bottom total lengths
must coincide. This is illustrated in the case of a linear involution on 3 intervals in
Figure 3l The dotted line corresponds to the splitting of the win-lose induction and
the thick line is the orthogonal subspace defined by lengths equality.

11 3 2 2
3
Figure 3: Rauzy diagram for linear involution on 3 intervals.

A degenerate case can happen where the length condition implies existence of a
saddle connection. Consider for instance the matching

1 3 1
3 2 2)°

In this case, the length condition implies equality of length for the ending labels.
In other words, ker ¢, coincides with H" and this vertex has no outgoing edges in G®.

Remark 2.4. The linear forms induce a Lebesgue measure on each ker ¢, which we
denote by Leb®. On extremal strongly connected components of G® (for which there
is no edges going out of the component), it comes with a specific property denoted
by (Leb?) in [FouZjd]. When it is not checked one only has (Leb%) as for subgraph
restrictions in the next subsection. B

2.1.2 Subgraph restriction

Let FF = (VF JEF ) be a subgraph of a win-lose induction base graph G. Consider
the subset of parameters in A(G) which remain in F for n steps

A"F) = | | U MA,.
veVF ’Y‘E‘H(U)
Y=



w

= w

IR

)X

where II(v) is the set of finite paths in G starting at v and |y| denotes the length of
path . This also induces a restricted induction on the space of parameters remaining
indefinitely in F, A(F) =, oy A™(F). Denoted by TF : A(F) — A(F).

3 1
1 VS P - 3

)

Figure 4: Rauzy diagram for 3-IET with flip.
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For flipped interval exchanges and linear involutions, we will be interested into
parameters for which the induction does not meet permutations where the end labels
of top and bottom intervals differ. An example on 3 intervals is given by the sub-
graph with vertices on the top line and thick edges in Figure[d This converge to an
empty for such simple combinatorics, but non-trivial fractal sets appear for higher
dimension or more general constructions (such as Rauzy gasket studied in [Fou24b]).

(a) Parameters remaining in the sub-  (b) Another such set converging to a
graph of Figure El for 12 steps. non-trivial fractal.

The two examples above and their generalization will be the heart of Section [3]

2.1.3 Suspension

Let us define the roof function for (almost) all z € A(G) as follows. Let e be the
edge from vertex v to v’ such that z € {v} x M.A,/, we set

r(z) = — log (’M ””’) )

Define the suspension space A(G), := (A(G) x R)/ ~, where for all (z,t) €
A(G) xR we have the equivalence (z,t) ~ (Tﬂc t + r(z)) . The associated suspension
semi-flow is defined on A(G),, for all ¢ > 0, by

ot (z,8) = (z,8+1).

—



Notice that this flow is defined such that the first return map to the section A(G) x
{0} is T and its return time is 7.

Denote by Mr,, the set of T-invariant Borel probability measures with p(r) :=
fA(G) rdu < +oo. Every ¢-invariant Borel probability measure pr on A(G), can be
decomposed as a product of a measure p € My, and the Lebesgue measure on
fibers. Namely,

fir = (u(r)) " (1 x Leb)jace), -

The Kolmogorov—Sinai entropy of the flow for this measure is written h(¢, ix)

and satisfies Abramov’s formula

h(¢, 1) =

where h(T, p) is the Kolmogorov—Sinai entropy for 7'. In this setting the topological
entropy can be defined as

htop(¢) = Ssup h(¢7 ﬁr)

peEMT

The induced measure f, for p € Mr, at which this supremum is achieved (and by
extension y itself) is referred to as a measure of mazimal entropy.

Again the suspension can be restricted to subgraph on spaces A(G?), := (A(G?)x
R)/ ~ and A(F), := (A(F) x R)/ ~ respectively.

2.2 Non-degenerating properties

In a companion work, we have developped criteria on graphs and subgraphs for the
win-lose induction which implies many ergodic properties of the map and its sus-
pension flow. We first present the criterion on a full graph and then for a subgraph.

2.2.1 On full graphs

Assume that, on a non-trivial subset of labels £ C A, the parameter in ]R“_ﬂ have
coordinates in £ infinitely smaller than others. At a vertex with at one outgoing
edge labeled in £, any other edge labeled outside of £ must win. Hence, the map T'
will remain in a subgraph in which we remove such edges not labeled in L.

This motivates the introduction of the degenerate subgraph G* having the same
set of vertices V' as G but for which we remove edges along which a letter in £ wins
against a letter not in £. For a vertex v € V in G*, the set of outgoing edges is
defined as follows.

o Ifl(E,)NL#D
Ef ={e€ E,|l(e) € L}.

o Otherwise
Ef = E,.

Definition 2.5 (Non-degenerating graph). We say that the base graph of a vector
memory random walk is non-degenerating if it is strongly connected and, for all
0 C L C A and all vertices v in a strongly connected component € of G*, one of the
following properties holds:

1. There is a path from v in G labeled in L leaving € .



2. (B,)NL|<1.

In plain words: from any vertex, no letter in £ can win against another letter in
£ in any strongly connected component of G* except if there is a path labeled in £
leaving the component.

It is easy to check that this property is satisfied by a Rauzy diagrams associated
to an irreducible IET (see Proposition 2.15 in [Fou24a]). This implies many ergodic
properties for Rauzy—Veech induction in this case, as a consequence of the following
theorem in [Fou24al.

Theorem A. FEvery non-degenerating win-lose induction has a unique invariant
measure equivalent to Lebesgue measure and it induces the unique invariant proba-
bility measure of mazimal entropy for the (semi-)flow on its canonical suspension.

Moreover, the entropy of the canonical suspension flow is equal to |.A|.

2.2.2 On subgraphs

In certain cases, such as those illustrated in Figure [3| and Figure @, it becomes
necessary to consider a subgraph F' of a graph G that defines a win-lose induction.
Within such subgraphs, we often encounter vertices that have a unique outgoing
edge.

From a dynamical point of view, these vertices can be bypassed in the orbit of
the win-lose induction, until we encounter a branching verter — that is, a vertex
with multiple outgoing edges. This observation motivates the introduction of a
factorization of the graph.

More precisely, we aim to associate to each degenerating subset of labels a cor-
responding subset of vertices, on which we define an accelerated version of the in-
duction, distinct from the one induced on the factor graph.

To ensure that this acceleration process remains well-defined and finite, we first
impose a structural condition on these families. Furthermore, since we wish to
keep track of the labels in the degenerating subset, we require that each such label
intervenes only once at each step of the accelerated induction.

Definition 2.6 (Filling factoring family). Consider, for all® C L C A, a subset Ve
of vertices of F' such that every loop in this subgraph contains a vertex in Vc. Let
E* be the set of finite path in F such that

e [ts start and end vertex belong to \75 and no other visited vertices do.
o Along this path, no letter in £ wins against a letter not in L.

These paths are called L-factor paths.

We say the collection {\N/L} is a filling factoring family if every L-factor path ~
visits at most one branching vertex v satisfying l(Ey,) N L # @ and which is not the
end vertex of v. We call v the L-branching vertex of v when it exists.

Notice that the degenerate subgraph Fz is composed of edges appearing in paths
of EX.

Remark 2.7. The condition on loops implies that E~ is finite.

Notice that we say a letter a wins against another letter 5 along a path v =
e1...e, if @ wins against 8 along an edge (in G) or « wins against § which has won



against 3 before, etc. In other term, if the matrix M., ... M,

€n

is positive at (a, B).

A generalization of the non-degenerating criterion is then defined for such fami-
lies.

Definition 2.8 (Non-degenerating family). A filling factoring family {‘7[:}[: forms
a non-degenerating factorization of the subgraph F if for every § C L C A and
L-factor path v € EX contained in a strongly connected component € of Fr one of
these properties is true.

1. There exists a path in F starting at a vertex of v which leaves € and such that
each edge in the path based at a branching vertex of F' is labeled in L.

2. All edges in v are labeled by letters not in L.

The path has a L-branching vertex with a unique outgoing edge labeled in L
and each label winning against a letter in £ along v is in I(EY) \ {a}.

4. The path does not meet any L-branching vertex, it has a unique winning label
B and at least one losing label not in L.

Notice in particular similarities of [I] and [3] in this definition with [I] and [ in
Definition [2.51
A generalization of Theorem A under hypothesis (Leb? ) was also proved in [Fou24a).
Here, we will just use that this hypothesis is satisfied on extremal strongly connected
components of G?. It corresponds to the (strong) irreducibility property for linear
involutions defined by Boissy—Lanneau [BL09], see Section

Theorem A’. Consider a win-lose graph endowed with an invariant family of lin-
ear forms. Assume there is an extremal strongly connected component of the induced
subgraph G® which is non-degenerating. Then the map T restricted to this compo-
nent has a unique invariant measure equivalent to Lebesgue measure and it induces
the unique invariant probability measure of mazimal entropy for the (semi-)flow on
its canonical suspension.

Moreover, the entropy of the canonical suspension flow is equal to the dimension
of ker ¢, in previous notations |A| — 1.

For other non-extremal strongly connected components F' which can appear in
the flipped cases, one only has a weaker property (Lebﬁ). Nonetheless the parameter
space A(F) has holes (coming from paths going out of the component) and we can
bound its Hausdorff dimension.

Theorem B. Let F by a non-extremal strongly connected component of a win-lose
graph G and assume it is non-degenerating. Its canonical suspension flow admits a
unique measure of mazimal entropy, with entropy 0 < h < |A|, and the Hausdorff
dimension

dimp A(F) < |A| — 2+ —= < dim A(G).

b
| A]

One also has a version of the theorem for subgraphs taken in the linear subspace
restriction G of a win-lose graph with an invariant family of linear forms {¢, }vev .

Theorem B’. Let F by a non-extremal strongly connected component of G® and as-
sume it is non-degenerating. Its canonical suspension flow admits a unique measure
of mazimal entropy, with entropy 0 < h < |A| — 1, and the Hausdorff dimension

dimpy A(F) < |A| — 3 + %1 < dim A(G?).

Al
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2.3 Central Limit Theorem

On A(F), there is a natural metric given by Hilbert metric on the simplices AC.
And one can associate a product metric on 3? with the euclidien metric in fibers.

For a > 0, let us denote by H” (KTG) the space of a-Hélder functions for this
metric. The canonical suspension flow in these cases also satisfies the following.
Theorem C. Let p > 2 and let f € Ho‘(ﬁf) n Lp(ﬁf,,ur) satisfy [ fdur = 0.
Assume that there does mot exist ]7 € L2(£TG”LLT) differentiable in the direction of
the suspension such that f = th where X; 1s the Lie derivative in that direction.
Then there is a positive constant oy such that

L
\/%/ fo@tdti>./\/'(0,0f) as |L| = oc.
0

Where the convergence is in distribution to a normal law of variance oy.

3 Rauzy—Veech inductions

3.1 Definitions
For w a finite word in the finite alphabet A we denote by |w|, the number of
occurrences of the letter € A in the word.
Definition 3.1 (Signed matching). A signed matching m = (v,w, €) is given by two
words v and w in an alphabet A which satisfy, for all x € A,

Vo + [elo = 2
and a sign map

e: A— {£1}.

We say a letter a € A is double if |v|s or |w|q is 2. Otherwise, we say the letter
is simple. For a length vector A\ € Rﬁ we denote the length of w by

|w]

Aw) == Z)\w

Definition 3.2 (Linear involution). Let m = (v,w,¢€) be a signed matching and a
length vector X € RY such that \(v) = MNw). We call the couple (m,\) a linear
involution.

Let us follow the definition in [DN90]. Notice that the sign function € describe
the horizontal inversion. Let us define a function § which describes the vertical
inversion for all = € A,

5(95):{ 1 if =1

—1 otherwise

Definition 3.3. Consider the set of flipped intervals, F = {x € A | e(z) # d(x)}.
If F is empty we say that (m,\) is a linear involution without flips. If F is

non-empty and differs from the set of double letters, we say that (m, ) is a linear
involution with flips.

11



Notice that the case where F' is exactly the set of double letters in m (and is
not empty) does not appear. Thus is due to the fact that when associating a linear
involution to a measured foliation, one can exclude it [DN90]. This last condition is
necessary in the proof to assert that there exists an open set of length parameter for
which the involution has a flipped periodic point. It would be interesting to describe
the generic dynamical behaviour of this last remaining case, but this is beyond the
scope of this article.

Definition 3.4 (Interval exchange transformation). An interval exchange is a linear
tnvolution (m, X) such that for all x € A, ||z = |w|e =1, i.e. all letters are simple.
If moreover e = 1 we say that (m, A) is an interval exchange without flips, otherwise
with flips.

Definition 3.5. Let (v,w, €, \) be a linear involution. We denote £ := A(v) = AMw)

and the interval I = [0,£]. For each label | € A, we define two points &,&} in the
interval I together with a number o € {0,1}.

e Ifl occurs twice in v at indices 1 < p < q < |v|, then:
p—1 q—1
{?:Z)\,ji, &IZZAW’ and o, =0.
i=1 i=1
o Ifl occurs twice in w at indices 1 < p < q < |w|, then:

p—1 q—1
&= Xy &= Ay, and o =0.
j=1 i=1

e Ifl occurs once in v at index 1 < p < |v| and once in w at index 1 < q < |w|,

then:
p—1 q—1
&= My &= Ay, and or=1.
i=1 j=1

Forc € Z/2Z andl € A, we denote by I} the subinterval |¢7, &5+ [C I. Consider
the unique linear map f{ : I] — If'H with constant derivative equal to €(l). It can
be explicitly expressed for all x € I} by

@) =gt e (o-6 - 3)+ 3.

Let S be the set of all points . We define an involution f on I\ S x Z/2Z by, for
x € If and o9 € Z/2Z,

Je.00) = (Fi(@),00 + 1) .
Remark 3.6. This associated map motivates the name for the couple of signed
matching and length vector. They correspond to linear involutions with and with-
out flips, as considered in [DNIO] and [BLOJ] respectively. In the case of interval
exchange, the map always changes the element in Z/27 and can be factored into a
translation map on the interval I, as defined in [YocI().

Moreover, this association can clearly be performed in the other direction, from
the involution map to a signed matching with a length vector.

The existence of a linear involution is central in the definition of Rauzy—Veech
induction. But for some signed matching the condition on lengths can clearly not
be met. For instance, see the matching with all double letters on top in Figure

12



Definition 3.7. We say a signed matching m = (v,w,e€) is balanced if m is an
interval exchange or there exists a letter a in v and b in w such that |v|s = |w|p = 2.

Proposition 3.8. A signed matching m is balanced if and only if there exists a
length parameter X such that (m, \) is a linear involution.

Proof. Assume without loss of generality that all letter v in w are such that |w|o = 1,
then A(v) — AMw) = 2#{X\s | B € A and |v|g = 2} = 0. Which can only be true if
the set of double letters is empty.

Conversely, the existence of a length vector is straightforward for interval ex-
changes and when there are double intervals on top and bottom. O

4 N
We denote by:

e X(Gy) the set of signed matching on n letters.
e X%(Gy) the subset of unbalanced signed matching.

e ¥°(G,) the subset of signed matching such that either it is unbalanced
or the last letters of the words v and w are equal.

For z,y € A, let us introduce the substitutions
si,y:x%xq; and s;’L:x—>y~x.

For all non-empty word w we denote by w the same word to which we have removed
the last letter.

Definition 3.9. The Rauzy—Veech induction for n > 2 is the map

Ry : 2(Gn) \ °(Gn) X RE — %(G,) x R
(V7w7 67 A) }—> (V/7w,’6l7A/)'

where for a, 8 the (distinct) last letters of v and w, the image is defined as follows :

o If Ao > Mg,
V=513 @) e, ¢ (B) = e(a) - (),
W' =529 @), ML= Aa — Ag.

o If Ag > Aa,
Vo= 3;(,?(77)7 el(a) =€(B) - e(a),
W' =552 @) B, Ns = Ag — Aa-

The coordinates that are not mentioned for € and X are kept unchanged.

13



Invariant linear form The difference A(v) — A(w) is preserved by the Rauzy—
Veech induction. Classically, the Rauzy—Veech induction is only defined in the case
A(v) = A(w) on maps associated to linear involution or interval exchanges.

In other terms, the family linear forms defined to each vertex (v,w,e) of G,
defined for all A € RY by

Pw,0)(A) = A¥) — A(w) )

is preserved by composition with the induction. Hence its kernels form an invariant
family of linear subspaces.

Proposition 3.10. The kernel of the linear form intersects the positive cone if and
only if m is balanced.

Geometric interpretation Let us mention here that there is a geometric in-
terpretation of these maps. It is not necessary to our definition but may help the
reader to understand its intuition. As in Section 2.1 of [BL09], the linear involution
can be seen as the first return map for a foliation on a surfaces on a transverse
interval. The interval is duplicated to separate cases where the leaf arrives at the
top or bottom of the interval.

Let s is the map switching values 0 and 1 in the second coordinate, i.e. for
(z,00) € I\S XZ/2Z by s(x,00) = (z,00+ 1), the orbits of the composed map so f
correspond to the intersection of the leaves of the foliation with the interval. Such
maps associated to a foliation depend on the choice of interval and Rauzy—Veech
induction is a natural induction which builds up from a linear involution another
one implied by the first return map of the same foliation on a different interval.

The following is proved in Section 2.2 of [BL09|.

Proposition 3.11. Let L = (v,w, €, \) be a linear involution. The linear involution
L is the image by Rauzy—Veech induction of L if and only if its associated map
so frr is the first return map of so fr on

10, max (A(¥), \(@))[ X Z/2Z.

8
PR

R

Figure 6: Linear involution as a first return map of a vertical foliation.

Definition 3.12. We say L contains a Mdbius strip if there exists a subinterval
of J C [0,€] and an integer n such that for all x € J and o € Z/2Z, we have

(so fo)*(z,0) = (—=z,0).
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Geometrically this indeed corresponds to the embedding of a Md&bius strip in the
vertical foliation of Figure @ Notice in particular, that this property is preserved
by Rauzy induction. We will see in the following, using renormalization by the
induction, that this property is generic for LI with flips.

Persistance of flips Let us indulge in a simple but key observation: to create
a new flip in the matching, a non-flipped letter should lose against a flipped one.
Conversely, to make a flip disappear, a flipped letter has to lose against another
flipped letter.

This implies in particular that an interval exchange or linear involution with flip
cannot be sent to one without flip. In the geometric interpretation, that can be seen
from the fact that the underlying surface is preserved and there is flip if and only if
the surface is non-orientable.

3.2 Rauzy—Veech as win-lose induction

Rauzy—Veech induction can be seen as the win-lose map associated to graph G,
whose vertices are all the signed matching in 3(G,). Edges going out of a vertex
associated to a given signed matching (v,w,e) € %(Gn) \ X°(Gn) are defined in
Figure[7] The change on € maps are not written down to simplify the presentation
but are clear from the definition of the induction given above.

The image signed matching by Rauzy—Veech induction can be in Eo(gn). In this
case, the Rauzy—Veech induction is not defined and stops. Such vertices are thus
defined in G, to have no outgoing edges.

s @) -a) B <y> a 50 (D)
S0y (@) w sha @) 5

Figure 7: Outgoing edges for a given signed matching

Property 3.13. For a vertex v € X(Gy), if there is a letter in the labels of E, that
is mot in L, this property is preserved along L-factor paths in G, or a subgraph of it.

Proof. 1t is a key property of Rauzy—Veech induction that a letter winning along an
edge from v to v’ appears in the labels of edges going out of the ending vertex v'.
But by the definition of L-factor path of a subgraph, there is no letter in which a
letter in £ wins against a letter not in £. Thus, as there is at least one letter not
in £ going out of v, no matter whether the losing letter is in £ or not, the winning
letter is not. And this is true all along the branch path. O

Property 3.14. Consider a path ~y starting with an edge e from vertex v. In G,, if
o wins against e, then either it is contained in l(E~.v) or a letter in this latter set
wins against o along 7.

Proof. Again we use the fact that the winning label remains in the outgoing edge of
the next vertex. Then notice that if 5 wins against « along 71 and ¢ wins against
B along the next edge ¢’ then § wins against o along 71 - €’ and § appears in labels
of the edges going out of the ending vertex of ¢/. We then prove the proposition by
induction. (I
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3.2.1 Linear subspace restriction

As observed in Equation , the length difference between the top and bottom
interval is preserved. This relation is computed by a linear form ¢, at vertex v =
(v,w,e) . For interval exchanges, this form is zero, but for linear involutions, it
induces an induction on the subgraph of vertices such that Rjﬁ Nker ¢, has non-empty
interior as explained in Section By Proposition [3.8 the corresponding set of
vertices are balanced matching. Using this proposition, one can also characterize
vertices with two outgoing edges.

Proposition 3.15. A signed matching (v,w, €) has two outgoing edges in G® if and
only it none of the ending labels of v and w is the unique double letter in the word.
We say such vertices are non-constrained.

Let G2 be the subgraph of G,, from which we remove vertices in $*(G,,) and
edges pointing to them. We denote them respectively by G and G.

Projective measures In the remaining of this subsection, we check a key in-
equality on mesures induced by Lebesgue measure on polytopes A?. They are central
to apply Theorem |§| and Theorem |[A’| to hyperplane restrictions (see Remarks 1.10
in [Fou24al).

Let us denote by S the set of simple letters and Dr and Dp the set of double
letters in v and w respectively. We thus have a splitting A = SUDrUDp. Polytopes
A? are the convex hull of R -rays generated by the vectors

e b, withaeS
e by +bg with a € Dr and 8 € Dp.
Where b, with o € A is the canonical basis of R*.
Definition 3.16. Let ¢ € R7, and let vq be the Borel measure on A, defined as
follows: for any subset A C A,
vq(A) :=Leb(p~"ANA,)

where p : Ri‘ — Rf/ ~ = A is the quotient map and Ag = {v € Rj‘: | (g,v) < 1}.

Consider Leb® the Lebesgue measure on ker ¢ normalized by the linear form,
using a common Lebesgue measure on R. One can again define for g € Rf, l/ffv the
Borel measure on A9, for any subset A C A?, by v¢" (A) := Leb?” (p~' ANA,). And

Vg’” (Alu)
Vg (8s,)
Consider for o € Dr, 8 € Dp scalars such that Ay g such that

Z Ao, = 1.

a€Dr, BEDE

the probability measure on paths in G® by P2 (y) =

Notice that

Yo Daplbatbs)= Y pabat Y vsbs.

a€Dr, BEDE a€Dp BEDE

16



Where pa = > gcp, and pg = 3 cp.- AS D cp Ba = Land 3 5 p v =
1 these vectors define an element of A, and A,,. Which leads to the following
proposition.

Proposition 3.17. The convez hull of vectors (ba + bg)aecpy, By 1S iSomorphic
to the product of two simplices Ap X Ay, composed of respectively n = |Dr| and
m = |Dg| vertices.

There is a clever construction of a triangulation for product of simplices, called
the staircase triangulation. Details can be found in Theorem 6.2.13 of [DLRS10].
We will only use the following here.

Theorem 3.18. Assume A, and A, are the convexr hull respectively of vertices
a1y...,an and bi,... by. There exists a triangulation of A, X A, such that all
simplices of the triangulation contain a1 and b;.

This enables us to prove the following.

Proposition 3.19. For a non-constrained vertex v, consider o, (8 the rightmost
labels of its top and bottom words and the half space Dag = {\ € RY | Ao < As}.
For all K > 0, there ezists o > 0 such that for all q € Rjﬁ satisfying qs < Kqo for

all § € A,
1 ’/q(Ai’ N Da,s) < ( qa )U
2K+1 7= (A T \da+tag/)

Proof. By the previous theorem, there exists a triangulation of A? by simplices
which all contain the following two vertices :

e if a and (3 are simple, b, and bg;

e if o is simple and 3 is double, b, and bg + bs for some other double label J;
e if B is simple and « is double, b, + bs and bg for some other double label d;
e if a and 3 are double, b, + bs and bg + bs: for some other double labels §, 6’

Notice that the existence of other double labels is implied by the vertex being non-
constrained. Let us prove the inequality in the last case, the others being similar.
Let us denote by A one simplex of this triangulation and bo+bs, bg+bs/, €3, ..., €q
its vertices. The intersection of A with D, s is contained in the simplex A, defined
as the convex hull of by + bg + bs + bs/, bg + bsr, €3, ..., €q.
Notice that

Vq(AmDa,B) < Vq(Aa) _ qa + Qs < qa + g5 .
ve(A) T (D) qatgetast+qs T qatas+gs

By assumption g¢s,gs < K¢a, thus there exists o > 0 (depending only on K) such

that
V(AN Do) _ ( o )
ve(d) T \da+tas/)
The proof of this statement can be found in details in Proposition 2.20 of [Fou24a].
On the other hand, intersecting with the complementary half-plane, we have

vq(AN Dga) < _ 98 + g5 < 2K thus vq(AN Da,p) 1
ve(A) T g tas taa T 2K +1 vg(A) T 2K +1
By splitting the measure on the simplices of its triangulation, we see that the
Yq (Af N Da,p)
Vq(Aﬁ)
concludes the proof. O

ratio is a weighted average of the ratio for these simplices. Which
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3.2.2 Subgraph restriction

A strongly connected component of a directed graph is by definition a maximal
subgraph such that all distinct vertices v and v’ have a directed path from v to v’
and from v’ to v.

Definition 3.20. An irreducible component is a strongly connected components of
G® for which the set of labels of outgoing edges in G is the whole alphabet A. A
signed matching in such a component is called irreducible.

Remark 3.21. If a strongly connected component is not irreducible, one can see
the subgraph as an irreducible component for LI on the labels that appear. The other
parameters remain unchanged by the induction.

In the following we fix such strongly connected component and denote by F
the corresponding subgraph of G?.

Remark 3.22. For interval exchanges, irreducible signed matching (v,w,€) is fully

characterized by the fact that their is no non-trivial decomposition v = v' - v* and

w = w' - w? such that the set of labels appearing in V' and w! (and thus in v? and
w?) are equal (see e.g. [YocIO)).

For linear involutions without flips, irreducible signed matching are characterized
in [BLOY] Definition 3.1. Indeed, a dynamically irreducible generalized permutation
with admissible lengths must become strongly irreducible in finite time. Thus, if the
permutation is not strongly irreducible, there is mo loop based at this permutation
along which all labels appear. Since it would induce a positive matriz and an admis-
sible length vector which never becomes strongly irreducible. In particular, it does
not belong to an irreducible component.

It is also proved in that work that such objects come from a geometric model
(as the first return map on an interval of the vertical foliation of a half-translation
surfaces).

It would be interesting to address the following question.
Question 3.23. Characterize irreducible signed matchings with flips.

Nonetheless, it is not necessary to the present work to understand this key com-
binatorial link between the components of the diagram and properties of the signed
matchings. We only need here the following combinatorial characterisation of the
subgraph.

Proposition 3.24. Irreducible components are non-degenerating.

As a warm up, let us prove it for full graphs, i.e. for the classical Rauzy diagram
on IETSs and its generalization to LI without flips.

Consider a subset § C £ C A and vertex v in a strongly connected component
€ of G£.

e If both outgoing edges of v are labeled in £, by irreducibility of the signed
matching, there exists a path to a vertex with at least one outgoing edge not
labeled in £. Consider the shortest factor pointing to such a vertex, it must
be labeled in £ and leave % by Property Thus v satisfies Condition

e If at least one of the outgoing edges of v is not labeled in £, the vertex obvi-
ously satisfies Condition

18



In the general case, for all ) C £ C A, we define a subset of vertices of F.
?L:{vGFL|E§ﬂZ:@0rE5ﬂE:®or |E5|:2}

We start by showing that this constitute a filling factoring family.
Proposition 3.25. A L-factor path associated to {YN/C} cannot loop.

Proof. Assume there is a loop that does not contain any vertex in Vz. Then it is
composed of non branching vertices in I’ and their unique outgoing edge is labeled in

L. The loop then composes the whole strongly connected component and is labeled
in a strict subset of the alphabet. Which contradicts the irreducibility property. [

Proof of Proposition[3.24} Let v be a L-factor path starting at a vertex v and con-
tained in a strongly connected component € of Fr.

If ES N L = 0. By irreducibility, there exists a path ~ starting at v in F which
contains ends at a vertex with a least one outgoing label in G which is not in £. Up
to taking a prefix of v, we assume its end vertex is the first vertex to satisfy this con-
dition. Thus all previous branching vertices have both their outgoing edges labeled
in £. By Property the path v must leave the strongly connected component ¢’
of v. Condition [I]is then satisfied.

If EENL =0. Let « € L be the first label of v and S the label of the other
edge in G. Then 8 must also be in £ since otherwise a letter in £ would win against
a letter in £ along . Again by Property in a L-factor path starting at v,
all vertices have at least one outgoing edge in G not labeled in L. If the path is
composed of only one edge, this falls in Condition

Otherwise, in intermediate steps there is always one edge labeled in £ in F’ which
must lose. And the winning letter along each edge of the path is always (3 since is
must be preserved by definition of Rauzy—Veech induction. Thus Condition [4] is
satisfied.

If |EF| = 2. Assuming the other conditions for the set of vertices are false, v
has two outgoing edges respectively labeled by o € £ and 8 € £. Again, along every
edges of v, the winning letter must be 8. Moreover the losing letter has to be in L
for the vertex no to be in V. The path thus satisfies Condition O

Remark 3.26. Lemma 3.6 in [FouZ4d] implies that there exists a positive path in
an irreducible component. In other terms, there is a path in the component along
which all letters in A lose. Thus a component is irreducible if and only if all letters
in A appear as labels of its edges inside the connected component.

3.3 Strongly connected components

Definition 3.27. We say a strongly connected component of F is extremal if no
edge in G® leaves it. We call it trivial if it is composed of a unique vertex with no
outgoing edges.

Remark. The name comes from the fact that the component is actually extremal
in the condensation graph of strongly connected component.

Proposition 3.28 ([BL09]). An irreducible component for LI without flips is ex-
tremal.
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Proof. The induction in such component admits a natural extension with zippered
rectangle (as explained in the next section). In this setting the natural extension
preserves Lebesgue measure which is known to be finite and non-zero since Veech
[Vee90]. Thus, the induction must be recurrent and no edge can go out of the given
strongly connected component. O

In the case without flips, by Remark |3.22] all strongly connected components are
extremal. This concept will only be useful in the study of flipped cases.

Proposition 3.29. An irreducible component for a LI with flips is not extremal.

Proof. Assume for contradiction that all edges in G¢ remain in the component. Con-
sider a signed matching in it. By assumption, there exists a flipped interval labeled
by « in the matching.

If « is simple, follow a path until o appears in the label of outgoing edges of the
ending vertex — it exists by irreducibility. At this vertex « is still simple in the
corresponding signed matching. It should thus be allowed for a to win in G¢ since it
does not change the number of double labels in each word. But after a finite number
of steps where o wins the other ending label will be « since the losing letter goes to
the left of the twin « interval. Which leads to a contradiction.

Assume now that there are no flipped simple interval. Consider @ double and
flipped. By definition of linear involution with flips, there exists another double
interval 8 which is not flipped. Recalling Proposition [3.8] the signed matching must
be balanced, so we can assume « and § are in two different words. As before, follow
a path until o or B appear in the labels of outgoing edges of the ending vertex.
Assume this letter is a (the other case is similar), follow a path which makes this
letter win until the other appears as the ending letter. Such path should be in G¢
since to be constrained, the other ending label should be double and the only double
letter in the word, thus this could only happen if the other ending letter is 5. In this
configuration, if & and 8 are both the unique double label in their word, the length
condition implies equality of their length and the vertex has no outgoing vertex.
Otherwise, one of them could win, making the other label simple and flipped. Both
cases lead again to a contradiction. O

Proposition 3.30. Consider L = (v,w, €, \) a LI with flips in a non-trivial extremal

component. Let us decompose A, L1 A, = A by respectively the subset of letters

appearing as labels of outgoing edges in the component and its complementary set.
There exists a decomposition of the words

V=U4, V4 Ond W=wa,  wWa,

of non-trivial factors with letters respectively in A, and A; such that the component
is isomorphic to the diagram generated by (va,,wA,,€4,) where €4, is the restriction
of € to Aj. _ - ~

Moreover, the s o fr is conjugated to the union of the maps so fr, and so fr,.
Where

L, = (V-Ar7wAr7 €A, )\Ar) and L= (V-Al y WA, €Ay )‘-AL)'

Notice that L; is again a LI with flips whereas L, is a LI without flips.
Proposition 3.31. Let L = (v,w, €, \) be a LI in a trivial extremal component, and
let a, B be its ending letters.
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If o = f3, the map so f is conjugated to the union of e(a) -id on R X Z/27Z and
the map s o fr. with
L/ = (;7 &, (Gron) Aa)

where @ stand for the restriction to the complement of o in A.

If a # B, Ma) = XB) and the first return map of s o fL to the subinterval
[0, — A(@)[ is conjugated to the so fr, with

0 /1~ 0 [~
L'= (Saﬁ (@), sa,ﬁ(w)7 €&, A7)
where 5275 is the substitution which transforms letter B into a.

If « = 8 and e(a) = —1 the last interval, corresponding to «, is a Mobius strip.
Thus in this case we have shown that the LI we started doing the induction with
contains a Mobius strip.

In other cases, the last interval is either a flat cylinder or a transitive part for
the dynamics. But in both cases, L contains a Mdbius strip if and only if L’ does
and L' is again a LI with flips.

Remark 3.32. This decomposition discussion is missing in [DNIO] but necessary
for a complete proof.

As a consequence, of Proposition [3.29] Theorem [B| and E we can bound the
Hausdorff dimension of IET and LI with flips which do not contain a Mo6bius strip.

Theorem 3.33. Let m be the signed matching of an IET (resp. LI) with flips in
an irreducible component. The set of lengths A € Rﬁ such that a (m, ) does not
contain a Mobius strip is strictly smaller than |A| (resp. |A| —1).

Proof. The non-degenerating property of the graph implies by the work in [Fou24al
that the Hausdorff dimension of length parameter remaining in a given irreducible
component of the Rauzy diagram for IET or LI with flips is strictly smaller than
the dimension of its ambient space.

If there exists edges leaving the component, one can decompose the parameter
space into this set of parameters remaining in the irreducible component and a
countable union of polytopes corresponding to finite paths leaving the component.

The new component corresponding to such a polytope can either be extremal —
with no edges leaving it — or not. If it is not, consider the set of labels appearing in
outgoing edges of its vertices. By Remark [3.21] one can apply the result to the cor-
responding subspace of parameters. By stability of the Hausdorff dimension under
countable union, this shows that the space of parameters contains a union of poly-
topes which go in finite time to an extremal component and which complementary
set is of lower Hausdorff dimension.

For polytopes in an extremal component, the LI either contains a M&bius strip or
we consider its other part which does not interact with Rauzy induction — denoted
L; or L’ above. They are LI with flips with strictly less interval. One then concludes
by induction. (I

4 Natural extensions

4.1 Zippered rectangles

In the case of interval exchange transformation a geometrical parametrization of
the natural extension of Rauzy—Veech induction has been introduced by Veech in
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[VeeT8|. He has named this construction zippered rectangles, expressing in a visual
way the intuition behind it. This construction was generalized to linear involution
in [BLO9].

Assume v, w and € define a signed matching associated to an interval exchange
of linear involution (hence € is fully determined by the words). Assume there is a
(half-)translation surface that suspends the associated map or in other words that
one can find n vectors v in C labeled in A such that

o forall a € A, Re(va) >0,

o forall 1 <k < |y, Z Im(va) > 0,
acv(l...k)

o forall 1 <k<lw, > Im(wa)<0.
acw(l...k)

Where w(1...k) denotes the length k prefix of the word w.

Let us now consider the polygon obtained by representing these vectors starting
at point 0 one after the other in both orderings given by v and w. We identify pairs
of vectors with matching labels by translation or translation composed with central
symmetry (when € is respectively positive or negative). Then the obtained trans-
lation surface suspends the linear involution defined by the given signed matching
and the lengths (Re(va))aca-

On this surface, one can represent the suspension data by considering the first
return of the vertical flow on the horizontal interval. Figure [§] represents these two
constructions.

Figure 8: Zippered rectangle construction.

Let A, be a marked alphabet containing two copies xo, z1 of each letter z € A.
We assume moreover, up to choosing a marking, that v and w are words in A,, such
that each copy of a letter appears exactly once in the concatenation of the words.

Let o be the involution of {0,1} which switches the two elements. For every
z € A, let fr and g, be the bijections on {0, 1} defined as

f:{id ife(x) =1 and g:{id if 6(z) =1

o otherwise o otherwise
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We introduce the notation e (ij) := fo(i)gz(7)-

For each interval, we consider the rectangle formed by the suspension of the
interval above the top and below the bottom domains corresponding to v and w.
The corresponding side in the polygonal surface representation cuts it horizontally
in a top and bottom half. Each vertical side are cut into two pieces — except for the
rectangles meeting the leftmost singularity. We denote their length by Z;; where ¢, j
are 0 or 1 for respectively left, right and down, up interval.

In the wording of Veech, these numbers define zip heights which express the
position of the singularities and enable us to reconstruct the surface. These heights
satisfy the properties in the following definition.

Definition 4.1 (Zip functions). Let m be a signed matching of linear involution.
Let ay, Bi € A be the last letters of v and w respectively and vm,nn the first letters.
Zip functions for m are functions Zoo, Zo1, Z10, Z11 : Am — R such that

1. Zoo + Zo1 = Z10 + Z11,

Zij (o)) = Ziyijy (@) for all vp € Am and i,j € {0,1},

Z1i(xk) = Zoi(yt) for all xx,y1 € Am such that xxyi is a factor of w;,
Zro(aw) = —Z11(B1) and Zoo(ym) = Zor(nn) = 0.

Zro(ow) + Z11(ax) > 0 and Zoo(B1) + Zo1(Br) > 0.

for all Tk € oun and i,j € {0,1} such that Zij(zx) or its twin from[d does not
appear in[f,

SRS SN

Z”(Zl’k) > 0

Condition [2| can be understood according to Figure

(a) A (b) —A

Figure 9: Identification of the zip functions when applying -id.

We denote by Z,, the space of maps satisfying these conditions for a signed

matching m. Notice that it is a subcone (stable by scalar multiplication by R4 ) of
(RA™)%,

These functions induce a height map h : A — Ry defined for all « € A and

i,j € {0,1},
he) == Zio(y) + Zir ().

According to properties [I] and [2] of the definition, this does not depend on 4, j.
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Zo1(Ym)

Zoo(1n)

(a) A (b) —A

Figure 10: Identification when applying z — Z and z — —Z.

(673 Z11(04k)

’ym q
! \ Z11(B)

’ 1 Z10(1)
\ Zho(ou) 1

n B

Figure 11: Zip functions around the leftmost and rightmost singularities.

Let
Sn = |_| ({m} xR} x Zn)
mez(gn)\zﬁ(gn)

be an extension of the parameter space X(Gy) \Eo(gn) x R on which Rauzy—Veech
induction is defined. One can extend Rauzy—Veech induction

Rt (w,e,\,Z) €Sp — (VW' N, Z') € Sn

Where (v',w’,€') and X" are like in Definition [3.9|and Z’ is defined by the formulas
below.

These formulas are motivated by an induction on the underlying surface of a
zippered rectangles construction. We cut off a triangle on the left-hand side of the
surface and glue one side of the triangle to the polygon.

Remark 4.2. We express Rauzy—Veech induction on only one marking, the action
on the other marking of the same letter is defined to preserve Property[q in the
definition. Other values that do not appear in the definition are unchanged.
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4.1.1 Extension of the induction.

If bottom is winning,

Z10(B1) = Zoo(ax)
Zu(ﬂl) = *Zoo(Oék)
Z, ,(00) () = Zoo(ax)
Lﬁ(m)(ak) Zo1(ax)
L5<1o y(a) = Zio(owk)
Z a1y (aw) = Zui(aw)
g
.~’\
Q'
By
If top is winning,
Zio(ar) = —Zo1 (B1)
Zi1(ax) = Zo1(Br)
Z, .00y (B1) = Zoo(Br)
Z, o1 (B1) = Zo1(Br)
Z,10)(B1) = Zro(Br)
Z,.an(B) = Zu(B)
Qg
M'

B

+ h(B)

+ h(B)
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Let e : m — m’ be an edge labeled by «. The formula above defines in particular
a linear map H. from (RA’”')4 to (]RAM’)4 and a vector ve such that

Z' = H.Z + h(a)ve =: O.(Z). (3)

Where O, is an affine map in Z.

4.1.2 Invertibility

We show that the affine map ©. is actually a bijection on its image, which is a
simple subset of Z,,/.

Definition 4.3. Let

2y, =1{Z € Zu | Zro(aw) > 0}y ={Z € Zpn | Z11(B1) < 0}

and
Zo=1{Z € Zm | Zro(aw) <0y ={Z € Z,, | Z11(B) > 0}

where ay, Bi denote the last letters of the words of m in the marked alphabet.

Proposition 4.4. If the losing letter is on top (resp. bottom) the map O is a
bijection from Zm, to Z°, (resp. Z}.).

Proof. This fact is clear when considering the geometric interpretation of the induc-
tion. But we will check it directly on the formulas to convince ourselves that they
correspond to the construction.

Let us consider the case where bottom — letter 8; — is winning. The other case
is similar. We prove 0.(Z2,,) C an,.
Start by checking properties of Definition 4.1

1. Property [[]in the definition is obviously preserved.
2. Property [2| is preserved since we defined the induction on the other marking
using this property.

3. Two consecutive letters z,ys remain consecutive in v’ and w’ if they are dis-
tinct from B,y and a.

If () = 1 and 6(8) = 1, a factor 8,(;)ys appears in v and we have two possibly
new consecutive couple of letters f,yax and azys after induction. Remark
from the equations that Z1o(81) = Z; (o) (k) = Zoo(ax) hence Z1o(Bo)) =

Z10(B1) = Zoo(ar). And Zig(ak) = Zzﬁ(m)(ak) = Z10(B1) = Zoo(ys)-

If €(8) = 1 and 6(8) = —1, there is a factor B,)ys in w and we have two possi-
bly new consecutive couple of letters 3,y and axys after induction. Again

Z11(Boy) = Z 500y (k) = Zon (o) and Z11 (o) = Zoy11) (Boy) = Zo1 (ys)-

If (8) = —1 and §(8) = —1, there is a factor z,8,() in w and we have at
most two possibly new consecutive couple of letters x.ax and axfB,¢) after
induction. Then Ziy(8) = Z:,g(oo)(ak) hence Zii(ow) = Zy1(Bry)- And

Z11(2r) = Zo1(Boy) = Z10(61) = Zo1 (o).
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If ¢(8) = —1 and §(8) = 1, there is a factor x5, in v and we have at most
two possibly new consecutive couple of letters z,ax and axrfB,) after induc-
tion. Again Zoo(Bo1)) = Z/,00) (k) = Zio(ow) and Zig(zr) = Zoo(Bo)) =
Zyo(B1) = Zfﬂ(lm(ak) = Zjo(ak)-

4. Let o), be the last letter of v’ and n),, the first letters of w’. If @’ # « then
aj ay is a factor of v and

Zio(aw) = Zio(ah) = Zoo(aw) = —Z11(B1).

Moreover,
Z11 (i) = Zu (o) = Zor (o)
thus

h/(o/) = Z{O(a;/) + Zil(a;@/) = Zoo(ak) + Z01(ozk) = h(a) > 0.

If €(8) = 1 the first letters of v and w remain unchanged. If o/ = « then
Boyou is a factor of v’ and

Zigsiy (@) = Ziyay(an) = Z15(B) = Zrgs () (Bo) = Zogy () (k)

thus Zio(as) = Zoo(ax) = —Z11(B1) and B (') = Zig(a)) + Z11(ap) =
h(a) > 0.

If e(8) = —1, the unique delicate case is when B, is the first letter of its
word. Then 7/, = ay and axBsqy is a new factor and

Zigs(1y(Mnr) = Zl 0y (@) = Zuy10)(Boy) = 0

5. Finally Zfﬁ (i7)(a,) DECOMES positive since we add heights to potentially negative
zip values.

Let us now show that Zi,(3;) < 0. Notice that by definition we have Z1,(3;) =
—Zoo(ak) = —Z,,00)(@oky) and a # . If o does not appear as a letter at
the beginning of v or w then condition |§| implies the inequality and its values
clearly cover the whole set. If « is the first letter of v, then §(or) = —1 and
Zoo(0o(y) = Zs,oy1(ax) = 0. If a is the first letter of w, then (o) = 1 and
ZOl(aa(k)) = Zy, (0)1(ak) = 0. In these two cases, the equality does not affect the
value of Zoo () which is then again positive by condition [6]

One can express explicitly the inverse of the affine map O..

ha) = Z:,g(m)(ak) + Zzﬁ(n)(ak) Zio(B1) = Z:,g(lo)(ak)
hB) = Zio(B) + Z1(Br) Zu(B) = Z,a0(ar) —h(a)
Zoo(ag) = bﬁ(oo)(ak) — h(B)
Zo(ar) = Z 01 (k)
Zio(ag) = L5(1o)(ak) — h(B)
Ziwo(ox) = Lﬁ(w)(ak)
We let the reader check that this sends Z2, to a subset of Z,. O

27



Definition 4.5. Let
AV = { A eRY | Ao < As}

and
Al = {XAeRY | Ao > s}

where «, 8 denote the last letters of the two words of m. These length parameter
spaces correspond to bottom or top winning respectively.

Proposition 4.6. For any signed matching m, the extended Rauzy—Veech induction
restricted to ({m} x A), x Zp) and ({m} x A}, x Zn) respectively defines two in-
vertible linear maps

Ro(m) : {m} x AY X Z,, — {mo} X Ay X Zf?no

and
Ri(m): {m} x A}, X Zm — {m1} x Ay ¥ 20,

Corollary 4.7. The extended Rauzy map R is a bijection on its image.

Proof. Assume bottom has won, one can revert the action on the sign matching by
finding the losing letter. It must be next to the twin label of the winner. The value
of € being unchanged for the winner (which is the last letter on top). And it is the
same if top has won.

One can then construct the inverse of ’I@n We decide which letter has won by
looking at the sign of Z11(3;) and take the inverse by the corresponding map in the
previous proposition. O

4.1.3 Non-emptyness

One sensible thing to check here is that the space of possible zip functions is not
empty.

In the case of interval exchanges, Masur and Veech introduced a clever explicit
construction with integer zip heights defined using the permutation, which are pos-
itive when the permutation is irreducible. In [BL09], the authors adapt this trick to
the case of linear involutions (without flips). They have to be very smart and work
around some other difficulties coming from the fact that irreducibility property is
not as neat as in the interval exchange case.

In the end of this section, we will prove that zippered rectangle define a natural
extension. Thus an infinite path in the past must define uniquely zip functions. This
motivates a construction of a zip function using the induction.

It is easy to find zip function satisfying all properties but 3] The induction then
preserves these properties and more importantly gets us closer to satisfying [3}

Proposition 4.8. After one step of induction, property[3 gets satisfied for the new
singularity, i.e. between the twin winning letter and the losing letter and preserves
this property on other singularities.

Thus one only have to find a path along which all singularities lose at least once.
This must be the case for a finite power of a positive path since the corresponding
length vector goes to zero. This implies the following lemma.

Lemma 4.9. For every irreducible signed matching, there exists a zip function.
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4.1.4 Minimality

By the interpretation of zippered rectangles as suspension flow of the linear involu-
tion and Rauzy—Veech induction as a first return map, the suspension time above the
losing interval should be added the one above the winning interval. This property
is easily checked using the defining formulas.

Proposition 4.10. Let h and h' in R be the height function and its image by the
extended Rauzy—Veech induction. If M. is the matriz of the induction defined in the
win-lose formalism, then

h = M!h.

Consider H,, the vector subspace of R*™ satisfying equalities in conditions 1-4.
Consider the canonical basis of R“*™ and extract a basis for H,,, which be endowed
with a canonical scalar product. The space Z,, is a subcone of H,, where all but
one coordinates in the basis are positive.

From the definition equations we have the following decomposition of the linear
map associated to the extended Rauzy—Veech induction.

Proposition 4.11. Let m be a signed matching and m' its image throught R; with
i € {0,1}. There exists an orthogonal map U : Hp, — H,,» and a vector v(h) € Hp,
whose coordinates are positive linear combinations of heights, such that Rn acts on
Hy,, as U + v(h).

In particular, for a given zip fonction Z, the image zip function Z*) after k steps
of induction, can be expressed as Z*) = U® Z+4+v® where U™ is an orthogonal ma-
trix and v® is a linear combination of heights along the path h(0), h(1), ..., h(k—1).

By Proposition the scalar product between A and h is preserved. It corre-
spond geometrically to the area of the surface. One can thus consider the induction
restricted to the subspace of parameters where the scalar product (A\,h) = 1. On
this subspace we have the following key lemma.

Lemma 4.12. The extended Rauzy—Veech induction restricted to parameters where
(A, h) =1 is the natural extension of Rauzy—Veech induction.

Proof. We proved in Corollary that the extended Rauzy—Veech induction is a
bijection. The set of parameters with (A, h) = 1 projects surjectively to all possible
lengths. It remains to prove that the coding in the past of a given zip function Z
determines it uniquely for almost all paths. We follow Bufetov’s scheme of proof in
[Buf0g].

Consider a path 7. = e1...e, in the Rauzy diagram for which the associated
path matrix A = M., ... M., is positive. Let us consider the unique invariant
measure equivalent to Lebesgue. For almost every lengths and zip parameters, in
the corresponding bi-infinite path

Y=o V=kY—k4+1-- - Y=17Y0Y1 oo - Ve—1VE - - -

in the Rauzy diagram, the positive path 7. appears infinitely many times in the
future and the past of the coding (see e.g. Proposition 2.8 in [Fou24a]). Moreover,
by Proposition [£.10} the action of Rauzy—Veech induction on the heights of zippered
rectangles is given by the transpose of paths matrices. Thus if M_j) is the matrix
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induced by win-lose induction along y_g ..., h € M (t_ k) Rf. As A is uniformly
contracting Hilbert distance on the projectivized parameter space,

() M{_p) - RY =Ry - heo
k=0

is reduced to one ray and thus the heights A is defined uniquely up to a multiplicative
constant by the past coding ...vy_kV—g41-..7 (see e.g. section 3.1 in [Fou24al).
The condition on scalar product then defines it uniquely.

Moreover, coeflicients of M(_j) go to infinity as k goes to infinity. The height
of zippered rectangles at step —k satisfies M(t_k)h(—lc) = h thus h(—k) — 0 and
Z(=*) 5 0 since its coefficients are bounded by the heights.

Using the previous proposition, we see that the zip functions Z(=®) such that
after k steps of Rauzy—Veech induction we get that Z can be expressed as

7 = U(*k)Z(*k) 4 v(*k)

with U" orthogonal and v(—k) depending only on heigths h(—k), h(—k+1),...,h(-1)
which themselves are determined by the past coding. Hence

Z = lim o™ (h(=n),h(—n+1),...,h(—1))

n—00

and thus Z only depends on the past coding for almost every points. O

Remark 4.13. The Lebesgue measure on the space of zippered rectangles is clearly
invariant by extended Rauzy—Veech induction. This measure can be introduced in-
trinsically directly on strata of Abelian or quadratic differentials and is commonly
called Masur—Veech measure (see [Zor06] for more background).

4.2 Teichmiller flow

By classical results of the theory, Teichmiiller flow is finite-to-one semi-conjugated
to the extension of Rauzy—Veech induction to zippered rectangles. According to
Lemma it corresponds to natural extension of Rauzy map.

Thus, the ergodic ergodic properties of the canonical suspension flow for Rauzy—
Veech induction ergodic properties for the Teichmiiller flow on connected components
of strata of abelian or quadratic differentials.

In the following we show that Masur—Veech measure is the unique measure of
maximal entropy for these flows as well as Central Limit Theorem. These results
where known in the case of Abelian differentials [BG11], [Buf06], . This also implies
a common proof for exponential mixing which where proved by [AGY06] in the case
of Abelian differential and [ARI2] for quadratic differentials.

4.2.1 Abelian differentials

Let R be a connected component of Rauzy diagram. Let T : Ax — A be the
natural extension of Rauzy—Veech induction, where A is the associated space of
zippered rectangles. Let 1; be the canonical suspension flow associated to T. And
g+ the Teichmiiller flow on the stratum.

Theorem (Veech). For every connected component of a normalized strata of Abelian
differentials H1, there exists a connected component in Rauzy diagram R and a finite-
to-one map Tr : Ar — Hi such that g 0 Yy = g 0 TR.
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The Lebesgue measure induces by pull back an invariant measure on Ar and
integrating along fibers of the suspension an invariant measure p on Ag absolutely
continuous with respect to Lebesgue measure. As a consequence of Theorem [A] we
get the following.

Corollary 4.14. The Masur—Veech measure on normalized strata of Abelian differ-
entials is finite it is the unique measure of mazximal entropy for the Teichmdller flow
and its entropy is equal to |AJ.

4.2.2 Quadratic differentials

The family of linear forms defined by d(,u.¢)(A) = A(v) — A(w) is invariant with
respect to the induction. As we saw in Proposition [3.8] the kernel of this linear form
intersects the positive cone if and only if the linear involution is balanced.

Proposition 5.2 in [BL0O9] and results of Section 3 in [Zor08| imply the following
connection with Teichmiiller flow.

Theorem (Boissy—Lanneau, Zorich). For every connected component of a normal-
ized strata of quadratic differentials Q1, there exists a connected component in Rauzy
diagram R and a finite-to-one map 7r : Ar — Q1 such that Tgr oYy = gt 0 TR.

By Proposition [3.28 and Theorem [A7] we then have the following.

Corollary 4.15. The Masur—Veech measure on strata of quadratic differentials is
the unique measure of mazimal entropy for the Teichmiiller flow and its entropy is
equal to |A] — 1.

4.2.3 Other consequences

Besides from results on measures of maximal entropy, we show in this work that the
Teichmiiller flow satisfies some exponential tail property. Which implies in particular
a Central Limit theorem for Teichmiiller flow. Generalizing result of [Buf06] to
quadratic differentials in a unified proof with the abelian differential case.

To use Theorem [C]on a connected component of a normalized stratum, we con-
sider Holder function in the sense of Veech a function f : @1 — R such that there
exists a Holder function on

Theorem 4.16. Let p > 2 and let f € LP(C) with respect to Masur—Veech measure,
Holder in the sense of Veech, and satisfying [ fdu = 0 . Assume that there does
not exist g € LQ(Ql) such that f = Xig, where X is the derivative in the direction
of the Teichmiiller flow g.. Then there exists a positive constant oy such that

L
\/%fl/ fodidt -4 N(0,07) as|L| — oco.
0

Where the convergence is in distribution to a normal law of variance oy.

Moreover, this shows exponential tail in both cases which is the key ingredient
in [AGY06] (see Theorem 4.7) and [ARI12] (see Theorem 6.7) to apply Dolgopyat
spectrum estimates and show exponential mixing. Hopefully this unified proof brings
new insights to this property.

4.2.4 Flipped cases

In the flipped cases, we have seen in Theorem [3.33] that the suspension of generic IET
or LI contains a Md&bius strip. This led Danthony—Nogueira to prove that a generic

31



measured foliation on a non-orientable surface contains a one-sided closed leaf. In
particular when trying to generalize the Teichmiiller flow to such non-orientable
translation surfaces, this implies that it goes to infinity at almost every point (since
one would contract that closed loop and have a degenerating systole). Nonetheless,
the Teichmiiller flow should have an interesting dynamics on the — zero measure —
remaining part of the moduli space of such structures.

The canonical flow defined in the present work on irreducible components of the
Rauzy diagram for IET and LI with flips should be conjugated to this restriction of
the Teichmiiller flow.

Nomenclature
Gn, G graph defining Rauzy—Veech induction as a win-lose induction. (pl15)
G?, G? subgraph of G, composed of balanced signed matching. (p
3(Gn) set of signed matching on n letters. (pl13)
3*(Gn) subset of unbalanced signed matching on n letters. (p[13)
¥%(G,) subset of signed matching (v,w, €) that are either unbalanced or for which
the last letters of v and w are equal. (p
F an irreducible strongly connected component of G2. (p
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