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Abstract

Motivated by the study of generalizations of continued fraction algorithms, we
introduce a novel law of random walk on directed graphs, characterized by an in-
finite memory encoded through the action of finite paths in the graph on a finite-
dimensional vector space. When the action is linear, it may have a geometric model
on simplices which associates a deterministic dynamical system on the product of a
simplex with vertices of the graph.

We establish a criterion on the graph ensuring almost sure recurrence of the
random walk and strong ergodic properties for an associated geometric model. This
framework contains in particular multidimensional continued fraction algorithms and
Rauzy–Veech inductions and offers a unified approach to describing their dynamical
behaviors. It not only proves new results on them but also offers fresh insights into
their fundamental similarities and differences.

Moreover, our geometric framework serves as a powerful tool for analyzing asso-
ciated fractal sets. We provide an explicit upper bound on the Hausdorff dimensions
of such fractals, which applies broadly across these objects.

As a direct application, we provide in two companion works [Fou25b] and [Fou25a]
a new unified proof as well as new results on ergodic properties for classical multi-
dimensional continued fraction algorithms and for generalizations of Rauzy–Veech
induction in the non-orientable case for foliations, surfaces or both. Additionally,
we present new bounds on the Hausdorff dimension of Rauzy gasket in all dimen-
sions, fractal sets of vectors with integers in their continued fraction expansion are
bounded by a constant, and length parameters of minimal interval exchange or linear
involutions with flips.
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To compute the best rational approximations of a real number 0 < x < 1,
the classical approach employs the continued fraction algorithm, also known as the
Gauss algorithm. It hinges on the Gauss map

G : x→
{
1

x

}
,

which maps any positive number to the fractional part of its inverse. The Gauss
algorithm then associates to the number x the sequence of positive integers an :=⌊

1
Gn−1(x)

⌋
for n ≥ 1. The resulting sequence of rational numbers

pn
qn

:=
1

a1 +
1

a2 +
1

. . .

an−1 +
1

an

converges to x as n → ∞ and provides the best approximations of x, satisfying the
property that for all integers a, b > 0, if |bx− a| ≤ |qnx− pn|, then b ≥ qn.

The pursuit to extend this property to the simultaneous approximation of vec-
tors by rational numbers — together with algebraic inquiries into characterizations
of elements in finite extensions of Q — has initiated the theory of Multidimensional
Continued Fraction algorithms (MCF). Originating from Jacobi and Poincaré’s work
in the 19th century, who introduced two distinct generalizations, it led to the intro-
duction of a large variety of algorithms over time. Surprisingly, even the question
of convergence on each coordinate of a vector for these algorithms does not have a
straightforward answer. This complexity has been vividly demonstrated by Nogueira
[Nog95], who showed, two centuries after its introduction, that Poincaré’s algorithm
fails to converge for almost every vector.

For over three decades, a vibrant community of mathematicians has dedicated
their efforts to establishing the dynamical properties of MCF algorithms. These
properties include crucial aspects such as convergence [Fis72, Nog95, BL13], as
well as broader dynamical characteristics like ergodicity [Sch90, MNS09, BFK15],
the construction of invariant measures [AL18, AS17], and estimates on convergence
speed through Lyapunov exponents [Lag93, BAG01, FS19].

The first step in generalizing continued fractions is to recognize that the Gauss
algorithm arises as the first return map of a more fundamental dynamical system: the
projectivization of the Euclidean algorithm. Which operates on the two-dimensional
positive cone according to the following rule:

F : (x, y) ∈ R2
+ →

{
(x− y, y) if x > y
(x, y − x) if x < y

.

Many, if not all, MCF algorithms (e.g. every case surveyed in [Sch00]) can be anal-
ogously described using similar maps in higher dimensions. These maps usually
involve subtracting certain coordinates from others based on their order in size.

While MCF algorithms are commonly defined as iterations of a single map1 on an
n-dimensional positive cone, another notable generalization of the Gauss algorithm

1or accelerations of such maps, see [Fou25b] for details.
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emerges through Rauzy–Veech induction on interval exchange maps. This induction
operates across multiple copies of a positive cone associated with each vertex of a
combinatorial graph known as a ”Rauzy diagram,” introduced by Rauzy in [Rau79].
It serves as a foundational concept in Teichmüller dynamics, wielding significant
influence over dynamical outcomes concerning translation surfaces and Teichmüller
flow.

The exploration of Rauzy–Veech induction has yielded a multitude of significant
results in the field. Noteworthy achievements include the establishment of the ergod-
icity of the Teichmüller flow [Vee82] (also independently proven by Masur [Mas82]
using distinct methodologies), the introduction of Lyapunov exponents on transla-
tion surfaces by Zorich [Zor96], the demonstration of the existence and uniqueness
of a measure of maximal entropy for the Teichmüller flow by Bufetov and Gurevich
[BG11], and its exponential mixing rates described by Avila, Gouëzel, and Yoccoz
[AGY06]. For a comprehensive overview of these achievements, readers may refer to
the survey by Forni and Matheus [FM14].

◦ 1
2

Figure 1: The Rauzy diagram of the Gauss algorithm

The primary objective of this study is to develop a concept analogous to the
Rauzy diagram, specifically tailored for general MCF algorithms. This diagram
serves as a tool to capture the intricate combinatorial complexities inherent in such
algorithms. We introduce what we term as win-lose induction, which is defined
through a labeled directed graph. In this induction process, each step of the algo-
rithm operates an elementary linear transformation on a positive cone and progresses
along a corresponding edge. Consistently with Rauzy–Veech induction, we say the
label of the taken edge loses and the other labels of outgoing edges win at a given
step.

After defining win-lose induction in Section 1, we observe that the probability
law on paths in the graph induced by vectors picked randomly in the positive cone,
with respect to Lebesgue measure, resembles a random walk. This observation
leads to the formulation of a general law of random walk, termed as vector memory
random walk, where the probability at each step to go through an edge of the other
is given by corresponding coordinate of a vector, called distortion vector, which
evolves deterministically along the path. To encapsulate the specific properties of
win-lose induction, in particular the correlation between its dynamics and properties
on the graph, we enumerate four key structural assumptions that will stand in the
remaining of the paper.

In a companion work [Fou25b], we explain a general strategy to associate a win-
lose induction to a MCF and compute them for most classical MCF algorithms. As
an example, the graph for the Brun algorithm in dimension 3 is depicted in Figure 2.

These random walks have the remarkable property that if one goes through a
given label, the chance to go through this label again increases in the close future.
That reinforcing phenomenon may be the source of non-ergodicity which appears in
particular in Poincaré algorithm.

4



◦

•

◦

◦

•

◦

◦

•

◦

32

3 1

1

3

1

2
2

1

2

3

1

2

3

23

1

Figure 2: Brun algorithm as a win-lose induction

In Section 2, we use this perspective to develop a criterion directly applicable on
the graph that prevents this reinforcing to trap the random walk in a subgraph and
thus induces a strong recurrence property on the random walk.

These possible trap subgraphs appear when coordinates of the distortion vector
on a subset L of labels are infinitely larger than others. In that case, any time there
is a choice between labels in L and its complementary, the trajectory will almost
surely go along the edge labeled in L. Thus we associate to L a degenerate subgraph
in which we remove such edges not labeled in L.

The corner stone property on the random walk is then to prove that, with high
probability, trajectories go out of degenerate subgraphs in a controlled amount of
time.

This generalizes a phenomenon, noticed in [Ker85] for Rauzy–Veech induction
and later in [CN13] for a family of MCF, that in the degenerate case with labels in
L, a letter in L will always lose eventually to a letter in the complementary set.

We call this the quick escape property on the graph.

In the case of Brun algorithm, quick escape property is easy to check. Strongly
connected components of degenerate subgraphs of Brun are simple loops on two
vertices (see Figure 3). The quick escape property then reduces to showing that
almost surely a path leaves such loops in a reasonable time.

This arises from the elementary, yet somewhat magical, Kerckhoff Lemma ap-
pearing in [Ker85] and the Appendix of [AGY06] in the case of Rauzy–Veech induc-
tion and which extends our setting. We are then reduced to checking essentially that
minimal strongly connected components of degenerate subgraphs do not contain a
vertex with more than one outgoing edge labeled in L. We called this property on
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Figure 3: Degenerate subgraph of Brun for L = {1, 2} on the left and its strongly con-
nected components (with multiple vertices) on the right

the graph the non-degenerating property and show in Corollary 2.20:

Theorem. Non-degenerating property implies quick escape property.

Win-lose inductions not only define a random walk, but have an associated de-
terministic dynamical system. In Section 3, we introduce the concept of having
simplicial models for vector memory random walks, wherein the action of paths on
vectors is linear. This gives a deterministic algorithm on spaces constructed as in-
tersection of simplices which mimics this deterministic dynamical system on more
general sets. We term them simplicial systems, inspired by [Ker85] where the idea
of a common setting for Rauzy–Veech induction and renormalization of train tracks
was introduced under this name.

While this abstract setting may seem artificial since completely explicit in the
case of win-lose induction, it will turn out useful to describe similar dynamics on
fractal sets studied later on.

For these types of dynamical systems, we use the knowledge we built in Section 2
on random walks to study their ergodic properties. In particular, we define a sus-
pension of the dynamical system through a roof function r associated to the linear
action on paths and show an exponential tail property for it. The main technical
tool in this section is thermodynamic formalism via the family of geometric potential
function, given by scalar multiples of r.

Theorem. Every quickly escaping linear memory random walk endowed with a sim-
plicial model has an ergodic measure equivalent to Lebesgue measure and it induces
the unique measure of maximal entropy on its canonical suspension.

Other rich ergodic properties are implied by this theorem such as exponential
mixing, central limit theorem and strongly positive recurrence (see Section 3.3.1 and
Section 3.5). Moreover the invariant measures can by approximated using periodic
orbits with Bowen–Margulis approach. The theorem is also a key step towards
counting estimates of periodic orbits.

We check in [Fou25b] the criterion for Brun, Selmer, Jacobi–Perron, Ostrowski
algorithms in all dimension and Arnoux–Rauzy–Poincaré algorithm in dimension 3.
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And in [Fou25a], for generalizations of Rauzy–Veech induction on non-orientable
foliation on orientable and non-orientable surfaces. It provides a unified proof of
ergodicity of these algorithms as well as new results on the ergodic properties of their
canonical suspension flow (see Section 3.3 for its definition). It proves in particular
new results on the ergodic properties of Teichmüller flow, which were only known in
the case of Abelian differentials.

Several authors had the intuition that such a setting should exists. There have
been partial attempts to introduce global arguments in [Ker85], [CN13] and [MN13]
to quote some of them. But they only notice similar properties and scheme of proof
for other examples. The latter article for instance ends by conjecturing their meth-
ods adapts to Jacobi–Perron. This setting brings a rigorous explanation of this
intuition and can be adapted to all the cases known by the author.

It also brings a new perspective on Poincaré algorithm in all dimensions, which
are the only examples of classical MCF which are not non-degenerating and for
which it is not clear that they have stable degenerate subgraphs (except for the case
of dimension 3). Studying ergodicity of Poincaré algorithm reduces in this formalism
to compute fine estimates of the time a path in the graph stays in the degenerate
subgraph. Moreover, this formalism gives a lot of freedom to introduce new exam-
ples of ergodic MCF and find algorithms closer to optimality.

Assume we are given a linear memory random walk on a graph G, and it is
endowed with a simplicial model with parameter space ∆∞(G). If it satisfies an
extra hypothesis (LebH

∗ ) relating the law of random walk with Lebesgue measure
of the parameter space, our study on potential functions imply a bound on the
Hausdorff dimension of the space.

Theorem. There exists a unique real value κ for which the Gurrevich–Sarig pressure
P (−κr) vanishes. The Hausdorff dimension of the simplicial model is bounded by

dimH(∆∞(G)) ≤ d− 1 +
κ

d+ 1

where d is the dimension of the ambiant simplex.

There are fractal sets naturally emerging from MCF which can be constructed
as induced vector memory random walk from a win-lose induction on a graph G to a
subgraph F . It also induces a simplicial model for F with parameter space ∆∞(F,G).
As a consequence we get the following control on the Hausdorff dimension of the
parameter space.

Corollary. If the induced linear memory random walk from a win-lose induction
with base graph G to a subgraph F is quickly escaping, and from every vertex in F
there exists a path in G which goes out of F , then the Hausdorff dimension of the
simplicial model of ∆∞(F,G) is strictly smaller than the dimension of its ambiant
simplex.

An important example of such sets is the Rauzy gasket. It has been primarily
introduced by Levitt [Lev93] in connection with the dynamics of partially defined
rotations of the circle, and was rediscovered latter by De Leo and Dynnikov [DD09]
to study particular classes of examples for Novikov’s conjecture in mathematical
physics. It was generalized to all dimensions by [AS13] in a word combinatorics
approach. More recently it was used in Diophantine geometry [GMR19] to show
estimates on the number of integer points on Markoff–Hurwitz varieties.

As an application of this last theorem, we generalize in [Fou25b] the result on the
Hausdorff dimension of the Rauzy gasket in [AHS16] to Rauzy gaskets of arbitrary
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dimensions Gd, as introduced in [AS13]. And provide sharper bounds in all dimen-
sion, improving the previous known bounds by [AHS16]. We also prove such results
on fractal sets defined by vectors which continued fraction expansions are composed
of integers bounded by a constant.

In [Fou25a], we revisit Rauzy–Veech induction generalized to non-orientable foli-
ations and demonstrate that parameters inducing minimal dynamics have Hausdorff
dimension strictly smaller than that of the ambiant space.

1 Definitions

We start our study by considering a class of maps inspired by Rauzy–Veech induc-
tion, that we call win-lose induction, which serve as a motivation for the introduction
of the more general vector memory random walk setting in the following.

1.1 Win-lose induction

Let G = (V,E) denote a graph labeled with an alphabet A, where labeling is carried
out by a function l : E → A such that, for every v ∈ V , the restriction of l to edges
originating from v is injective. We denote an edge going from vertex v to vertex v′

as e : v → v′.

Consider RA
+ :=

{
x ∈ RA | xα > 0, ∀α ∈ A

}
and V 0 the set of vertices in V with

no outgoing edges. For a vertex v in V \ V 0, let Ev represent the set of all outgoing
edges from v. There is a partition of RA

+ indexed by edges e ∈ Ev which tiles are
defined by

Ke :=
{
(λα)α∈A ∈ RA

+ | λl(e) < λα for all α ∈ l(Ev) and α ̸= l(e)
}
.

Additionally, we associate to each edge e ∈ E a matrix

Me := Id +
∑

α∈l(Ev)
α̸=l(e)

N(α, l(e)).

Where N(a, b) is the elementary matrix with coefficient 1 at row a and column b.
Such that Ke =Me · RA

+ .

We introduce the win-lose induction associated to the base graphG, Θ :
(
V \ V 0

)
×

RA
+ → V × RA

+ , where for all λ ∈ Ke with e : v → v′, Θ(v, λ) = (v′,Θe(λ)) , and

Θe :

{
Ke → RA

+

λ 7→ M−1
e λ

.

This linear map can be characterized as follows: it compares the coordinates of all
edges emanating from a given vertex v on the vector and subtracts the smallest
coordinate from the others.

These maps are not well defined on the boundaries of subcones Ke. However,
we overlook this detail by referring to the entire space

(
V \ V 0

)
×RA

+ as its domain
since our primary concern lies in their Lebesgue generic dynamics.

In analogy with the standard Rauzy–Veech induction applied to interval exchange
transformations (for an introduction, refer to [Yoc10]), we introduce the concepts of
loser and winner labels for each edge in the graph, such that at each step, the map
substracts the losing label to the winning ones.
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Definition. At a given vertex v with two or more outgoing edges, during the in-
duction step which follows an edge e in the graph, we designate the letter l(e) ∈ A
as the loser. Conversely, for every other edge e′ emanating from v, we refer to the
letter l(e′) ̸= l(e) as a winner. In both cases, we say that these letters play in the
induction step.

Projectivization As such maps commute with multiplication by a positive scalar,
it is natural to quotient by such action when studying their dynamics.

For A a real linear space, we denote by P (A) or simply PA the projectivized
quotient space A/ ∼ where λ ∼ c · λ for all λ ∈ RA

+ and c positive real number. Let
∆ := PRA

+ and ∆e := PKe As Θ is piecewise linear, it induces a projectivized map

T :
(
V \ V 0)×∆ → V ×∆.

We use the notations

∆+(G) :=
(
V \ V 0)×∆ and ∆(G) := V ×∆.

Very often in the literature, these projectivized map appear in a chart where
the L1-norm, |λ| :=

∑
α∈A λα, is normalized. It is the case for Rauzy–Veech induc-

tion, Farey map and other multidimensional continued fraction maps (see [Fou25b]
for more details). In these charts, we have for all λ ∈ ∆e with e : v → v′,

T (v, λ) = (v′, Te(λ)) , where Te(λ) =
M−1

e λ∣∣M−1
e λ

∣∣ . In Figure 4, we represent the ac-

tion of the map T on subcones in these charts.

a b

c

Ta−→ a b

c

a b

c

Ta−→ a b

c

Figure 4: Action of Ta on ∆a when v has two or three outgoing edges

For a point in ∆+(G) all iterates of T are defined until it visits a vertex in V 0. For
a vertex v ∈ V , let Π0(v) denote the sets of finite path from v to a vertex in V 0 and
Π∞(v) infinite paths starting at v. By disregarding the preimages of hyperplanes of
equality cases in the simplex, on which T is not defined, we can define a coding map
which associates to each point of the cone a path in one of these two sets.

Proposition 1.1. There exists a countable collection F of codimension-one linear
subspaces, outside of which the win-lose induction induces a mapping

cv : ∆ \
⋃

H∈F

H → Π0(v) ⊔Π∞(v)

9



associating to a vector λ the path followed by the vertex component of Tn(v, λ).

To study iterates of T , it will be convenient to consider its restriction to the space
∆∞(G) :=

⋂
n∈N T

−n∆(G). The image of ∆∞(G) ∩ ({v} ×∆) by cv — intersected
with its domain of definition — is then included in Π∞(v).

Let Π(v) be the set of finite paths in G starting at v — in other terms, the set
of finite prefixes of Π0(v) ⊔ Π∞(v). For γ ∈ Π(v), we denote by Π(γ) the subset of
path in Π(v) which start with γ.

Proposition 1.2. For all v ∈ V and all γ ∈ Π(v), cv(∆
γ) = Π(γ) where

∆γ :=Mγ∆ with Mγ :=Me1 . . .Men .

Remark. For clarity in our exposition, we adopt the convention of using variables
of the form γ to represent finite paths in Π(v), and γγγ for paths that are either infinite
or terminate at a vertex with no outgoing edges i.e. in Π0(v)⊔Π∞(v). The notation
γγγn refers to the maximal prefix of γγγ with length less or equal to n.

Projective measures A pivotal element for examining the Lebesgue-generic
dynamical behavior of a win-lose induction is to analyze its behavior within a stable
family of measures equivalent to Lebesgue. The crucial aspect enabling us to derive
dynamical outcomes for Lebesgue-generic paths is the tractability of the induction’s
action on this measure family, through a dual action on a positive vector.

Definition. Let q ∈ RA
+, and let νq be the Borel measure on ∆, defined as follows:

for any subset A ⊂ ∆,
νq(A) := Leb(p−1A ∩ Λq)

where p : RA
+ → RA

+/ ∼ = ∆ is the quotient map and Λq =
{
v ∈ RA

+

∣∣ ⟨q, v⟩ < 1
}
.

A fundamental equality is given by

νq(MγA) = Leb(p−1MγA ∩ Λq) = Leb(p−1A ∩ ΛqMγ )

= νqMγ (A). (1)

The vector q keeps track of the way the measure is changed along the induction; we
call it the distortion vector. We think of it as a line vector thus matrices Mγ act on
its right.

Another fundamental equation arises from an elementary computation that can
be found, for example, in [Vee78] Formula (5.5).

Proposition 1.3 (Veech). For v ∈ V , γ ∈ Π(v) and q ∈ RA
>0,

νq(∆
γ) =

1

n!
· 1

(qMγ)1 . . . (qMγ)n
(2)

If v is a vertex and γ is a path starting at v we define the probability measure,

Pv
q(γ) =

νq(∆
γ)

νq(∆)
.

According to Formula (2),

Pv
q(γ) =

N(q)

N(qMγ)
where N(q) =

∏
a∈A

qa. (3)
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Proposition 1.4. Let e : v → v′ ∈ E labeled by α, then

Pv
q(e) =

qα
(qMe)α

=
qα∑

β∈l(Ev)

qβ
.

Proof. Just notice that for all β ̸= l(e), (qMe)β = qβ .

Definition 1.5. We associate a law of random walk with any graph defining a win-
lose induction. For each vertex v ∈ V and distortion vector q ∈ RA

+, let

• the sample space Π0(v) ⊔Π∞(v),

• the set of events given by the σ-algebra generated by sets{
γs · γγγt | γγγt ∈ Π0(γs · v) ⊔Π∞(γs · v)

}
for γs ∈ Π(v),

• the probability law given by the pushforward of Pv
q by cv.

Where the middle point in γs · γγγt denotes the concatenation of two paths.

If a path γ ∈ Π(v) can be decomposed as γ = γs · γt, where γs ∈ Π(v) ends at v′

and γt is a path in Π(v′), one can define conditional probabilities using Formula (1)

Pv
q(γ | γs) =

νq(∆
γ)

νq(∆γs)
=
νq(Mγs∆

γt)

νq(Mγs∆)
= Pv′

qMγs
(γt). (4)

If Γs is a set of finite paths that are not prefixes of one another, we can decompose
the probability as follows:

Pv
q (Γ ∩Π(Γs)) =

∑
γs∈Γs

Pv·γs
q (Γ ∩Π(γs) | γs) · Pv

q(γs), (5)

where v ·γs denotes the ending vertex of the path γs, Π(γs) := {γ ·γt | γt ∈ Π(v ·γs)},
and Π(Γs) :=

⋃
γs∈Γs

Π(γs).

1.2 Vector memory random walk

The property of the random walk associated with a win-lose induction motivates
the introduction of a more general stochastic process that we call the vector mem-
ory random walk, which is a priori not induced by a win-lose map or a geometric
construction.

Let G be a labeled directed graph with the same properties on labeling as in the
previous section, we use the same notations. Assume moreover that for any vertex
v ∈ V , there is a right action of Π(v) on RA

+ . We define a probability law on e ∈ Ev

associated to a distortion vector q ∈ RA
+ by

Pv
q(e) =

qα∑
β∈l(Ev)

qβ

where α = l(e) is unique by injectivity assumption on l.
For a given finite path γ ∈ Π(v) such that v · γ /∈ V 0, we further define the

conditional law for e ∈ Ev·γ

Pv
q(γ · e | γ) = Pv

q·γ(e).
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These two formulas together define, as in Definition 1.5, a probability law on the
measurable space Π0(v)⊔Π∞(v) equipped with the σ-algebra generated by the sets{
γs · γγγt | γγγt ∈ Π0(γs · v) ⊔Π∞(γs · v)

}
for γs ∈ Π(v).

Remark 1.6. For convenience and when there is no ambiguity, for an edge e labeled
by α, we write the α instead of e in the path.

In the win-lose induction case, the action is given by q · γ = q ·Mγ , and there is
additional control on the growth of distortion vectors for winning and losing labels.
This control is essential to establish connections between properties of the graph and
behaviour of the random walk. We list these essential structural properties satisfied
by win-lose inductions.

(H1) For all q ∈ RA
+ , the coordinates of q are non-decreasing under the action of Γ.

(H2) For all q ∈ RA
+ , all label α ∈ A, and all infinite path γγγ in the graph such that

α loses infinitely many times, we have

(q · γγγn)α −→ ∞.

(H3) There exist A > 1 such that for all q ∈ RA
+ and for every edge e and every label

α ∈ A,
(q · e)α ≤ A ·max q.

These hypotheses ensure regularity in the growth of the memory vector after
each step of the path action. In the win-lose induction case, for an edge e : v → v′

labeled α the distortion on the set of winning letters l(Ev) \α is added to distortion
on the losing one, thus implying a key balancing phenomenon.

For general random walks, we define winners as follows. Which ensures a similar
balancing phenomenon with respect to these winning labels.

Definition 1.7. For labels α, β ∈ A, we say that β wins against α along a path γ
in the graph if there exists B ≥ 1 such that for all q ∈ RA

+,

qα +
1

B
· qβ ≤ (q · γ)α.

The following property claims that, along an edge e : v → v′ labeled α, labels in
l(Ev) \ α win against α.

(H4) There exists B ≥ 1 such that for all edge e : v → v′ labeled α and all q ∈ RA
+ ,

qα +
∑

β∈l(Ev)
β ̸=α

1

B
· qβ ≤ (q · α)α.

(K) For all vertex v and every label α ∈ l(Ev), the following two properties hold.

a. For all q ∈ RA
+ and all labels δ ̸= α, (q · α)δ = qδ.

b. There exists M > 1 such that for all q ∈ RA
+ , (q ·α)α ≤ qα+M ·

∑
β∈l(Ev)

β ̸=α

qβ .

Remark 1.8. Assumption (K)-b., implies that for an edge e : v → v′ labeled α,
no letters outside of l(Ev) can win against α, hence together with (H4) the set of
winning labels against α is exactly l(Ev) \ α.

Also notice that assumption (K)-a. together with (H4) implies (H1). But our
first result will only require hypothesis (H1-4) so we prefer to state it independently.

12



Assumption (K) is satisfied forM = 1 in the win-lose induction case. It will only
be used later on, starting in Section 2.2, to prove Kerckhoff lemma (Lemma 2.12).
This lemma, however, is derived from the following upper bound on probability.

Proposition 1.9. Assumption (K)-b. implies that there exists σ > 0 such that for

all vertex v, every q ∈ RA
+ and all α ∈ l(Ev), Pv

q(α) ≤
(

qα
(q · α)α

)σ

.

Proof. For q ∈ RA
+ and an edge e : v → v′ labeled α as in the proposition, let us

define Q =
∑

β∈l(Ev)

qβ and M ′ =M · (Q− qα). We have

qα
(q · α)α

≥ qα
qα +M ′ ≥ qα

Q+M ′ .

As Pv
q(α) =

qα
Q
, we aim to prove,

qα
Q

≤
(

qα
Q+M ′

)σ

⇐⇒ (1− σ) · ln qα
Q

≤ σ · ln 1

1 + M′
Q

⇐⇒ ln

(
1 +

M ′

Q

)
≤ 1− σ

σ
· ln Q

qα
.

Observe that ln

(
1 +

M ′

Q

)
≤ M ′

Q
and 1− qα

Q
≤ ln

Q

qα
.

Hence, the previous inequality follows from

M ′

Q
≤ 1− σ

σ
·
(
1− qα

Q

)
⇐⇒ M · (Q− qα) ≤

1− σ

σ
· (Q− qα).

One simply has to pick σ > 0 such that M ≤ 1−σ
σ

.

1.2.1 Stopping times

The probability distribution of paths is highly influenced by the distortion. However,
it will be possible to bound the probability that certain well-chosen stopping times
are smaller than others independently of the distortion.

Definition. Let P be a property on finite paths. A stopping time associated with P
is the random variable

TP :

{
Π0(v) ⊔Π∞(v) → N ∪ {∞}
γγγ 7→ TP(γγγ)

where TP(γγγ) = min{n ≥ 0 | γγγn satisfies P} and γγγn is the maximal prefix of γγγ with
length less or equal to n.

The map TP is referred to as a stopping time for the vector memory random
walk, where the path stops when the property P is satisfied. In the following, we
abbreviate P instead of TP for simplicity in formulas.

Proposition 1.10. For every path γs ∈ Π(v) and γγγt ∈ Π∞(γs · v)

TP(γs · γγγt) = T
γ−1
s P(γγγt) + |γs|

where γγγt satisfies γ
−1
s P if and only if γs·γγγt satisfies P. In particular, when comparing

the stopping times corresponding to properties P and Q, we have, with abbreviated
notations,

Pv
q (P < Q | γs) = Pv

qMγs

(
γ−1
s P < γ−1

s Q
)
. (6)

13



Remark 1.11. If C is a set of paths such that together with its subset of paths
starting with γs they have non-zero measure, then

Pv
q (P < Q | C and γs) = Pv

qMγs

(
γ−1
s P < γ−1

s Q | γ−1
s C

)
.

In particular, if γ−1
s C = C almost surely, the conditional probability with respect to

C also satisfies relation (6) for all distortion vectors.

1.2.2 Induced random walk

An important source of examples will be given by induced random walks on a sub-
graph. Consider F a subgraph of a graph G on which a vector memory random walk
is defined. By restricting the action of the random walk on G to paths within F ,
we induce a vector memory random walk on F . For a vertex v ∈ F and q ∈ RA

+ , let
Pv,G
q denote the probability distribution on paths in G, and Pv,F

q the corresponding
distribution on paths in F .

Proposition 1.12. The induced probability on an edge e ∈ F is related to the
probability on G by

Pv,F
q (e) =

Pv,G
q (e)

Pv,G
q (edges in F )

Additionally, for a finite path γ, we have:

Pv,G
q (γ) ≤ Pv,F

q (γ)

When considering a subgraph, vertices with a unique outgoing edges will often
appear. A step of the random walk passing through such vertex is irrelevant from a
dynamical and probabilistic perspective. Thus for a graph G having such vertices,
we prefer to consider an accelerated random walk which continues as long as the end
vertex has a unique outgoing edge. This can be thought of as a random walk on a
factor graph.

Definition 1.13. We define the factor graph Ĝ = (V̂ , Ê) of a graph G as follows:

• V̂ is the set of branching vertices, i.e. those with two or more outgoing edges.

• Ê is the set of branch paths, i.e. the set of path in G for which the start and
end vertices, and only them two, belong to V̂ .

There is an edge between two vertices v and v′ in V̂ if and only if they are connected
by a path in Ê that starts at v and ends at v′. Moreover, the label of that edge is the
label of the first edge of the path in G.

While the restricted action on a subgraph satisfies assumptions (H1-4) and (K)-
a., certain subgraphs, may not preserve the assumption (K)-b. in general. Think of
a unique outgoing edge with a non-trivial action for instance.

Similarly, the induced action on Ĝ also satisfies (H1-4) but may fail to satisfy
either of properties in (K). Thus one will have to carefully check Property (K) when
associating such induced subgraphs.

Remark 1.14. Conditions (K) turns out too restrictive for certain applications.
We will then introduce later on a weaker version of (K) together with a graph condi-
tion that selectively applies the inequality (K)-b. to a subset of letters, and enables
letters outside of l(Ev) \ α to win against α. This refinement will be discussed in
Section 2.2.4 and Section 2.2.5.
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2 Generic path in vector memory random walks

In this section, we study generic infinite paths for the law of random walk we have
introduced. It describes in particular the Lebesgue generic behaviour of points for
win-lose inductions. We assume the following standing assumptions hold for the
remaining of the text (except in Section 2.2.4 where a graph with vertices having a
unique outgoing edge, inducing (K) to fail, will be discussed).

Standing Assumptions 2.1.

• The graph is finite and strongly connected.

• Every vertex in the graph has at least two outgoing edges.

• The action of paths on distortion vectors satisfies hypothesis (H1-4) and (K).

Strong connectivity can always be assumed for a vector memory random walk by
considering the strongly connected component of the starting vertex and consider its
induced random walk as in Section 1.2.2. One can also reduce to the second property
by considering a factored random walk, but one should be careful that Property (K)
may fail on the induced system doing so; this will be discussed in Section 2.2.4.

Assumption (K) is only used after the first subsection to prove Kerckhoff lemma
(Lemma 2.12). This lemma is the key tool for what follows but the assumption itself
is not further used after its proof.

The cornerstone of our understanding of a generic path behavior lies in the phe-
nomenon that balanced distortion vectors, as defined in the next subsection, induce
equivalent measures. Hence, our aim is to demonstrate that, independently of the
starting distortion vector, a path will almost surely reach a balanced state after a
reasonable number of steps. The influence of past steps on the random walk then
dissipates at such time.

We first define the quick escape property on the random walk, which triggers this
balancing phenomenon. Subsequently, we formulate a graph criterion that induces
this property and will be easier to manipulate and check.

2.1 Quick escape property

We start by introducing some useful properties for which we compare the stopping
times.

Let J τ be the property of a finite path γ along which the distortion vector has
jumped by a factor τ > 0 i.e. it satisfies

max{q · γ} ≥ τ max q

where the maximum is taken on all the coordinates of the vector.

Remark 2.2. By the second item of the Standing Assumptions 2.1 and (H2), for
all τ > 0, v ∈ V and all q ∈ RA

+, Pv
q(J τ = ∞) = 0.

A key property to consider for the distortion vector is the balance between its
coordinates, as defined below.

Definition. For L ⊂ A and K > 1, a distortion vector q ∈ RA
+ is called (L,K)-

balanced if and only if
max
A

q < Kmin
L
q

15



and
max
A\L

q ≤ min
L
q.

When L = A, we simply say the vector is K-balanced.

Proposition 2.3. If q is (L,K)-balanced, then after a letter in L loses, there exists
a set L′ containing L′ such that the updated distortion vector remains (L′, A ·K)-
balanced.

Proof. By assumption (H3), for every edge E, the new distortion vector q′ = q · E
satisfies the following for every letter α ∈ A:

q′α ≤ A ·max
A

q ≤ A ·K ·min
L
q.

Let L′ be the set of labels α such that q′α ≥ minL q. Then, L ⊆ L′, and we have
maxA\L′ q′ < minL q ≤ minL′ q′.

This definition is very useful due to the fact that it implies a lower bound on the
probability that an edge labeled in L loses.

Proposition 2.4. Let v ∈ V and q be a (L,K)-balanced distortion vector, then for
all edge e starting at v and labeled in L

Pv
q(e) ≥

1

A ·K

and all n-path γ of edges labeled in L,

Pv
q(γ) ≥

(
1

An ·K

)n

.

Let SL be the property of a finite path γ for which

max
A\L

{q · γ} ≥ 1

B
·min

L
q.

Where B is the constant in assumption (H4). The stopping time corresponds to
when the distortion on a coordinate outside of the subset L reaches the size, up to
a factor B, of the initial distortion on coordinates in L.
Remark 2.5. If we start with a (L,K)-balanced distortion vector, the set L contains
the |L| largest coordinates. Thus, when a letter β in L wins against a letter α not
in L, we have q′α ≥ 1

B
qβ which implies property SL.

Definition (Quick escape property). We say a vector memory random walk is
quickly escaping if for all non-empty subset L ⊊ A and all K > 1 there exist τ > 1
and ϵ > 0 such that for all vertex v ∈ V and all (L,K)-balanced distortion vector
q ∈ RA

+

Pv
q(SL < J τ ) > ϵ.

Let Mκ
L denote the property of a finite path γ for which

κ ·min
L

{q · γ} ≥ max
A

q.

When L = A, we refer to this property simply as Mκ.
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Lemma 2.6. If a vector memory random walk is quickly escaping, then there exist
constants τ > 1, κ > 0, and ϵ > 0 such that for every vertex v ∈ V and every
distortion vector q ∈ RA

+,
Pv
q(Mκ < J τ ) > ϵ. (7)

Proof. We prove this by induction on n. Specifically, we show that for each n, there
exist constants τn > 1, κn > 0, and ϵn > 0 such that for every vertex v and every
distortion vector q, there exists a subset L ⊂ A with |L| = n that satisfies:

Pv
q(Mκn

L < J τn) > ϵn.

For n = 1, we can take L to be the singleton containing the coordinate of q with
the largest value. Then for κ ≥ 1 and τ > 1, Mκ is satisfied at time 0 whereas J τ

is not.
Assume the property holds for some n ≥ 1. Consider a vertex v and the cor-

responding set L from the induction hypothesis. With probability greater than
ϵn, the random walk starts with a path γ such that the distortion vector satisfies
κn ·minL(q·γ) ≥ maxA q and maxA(q·γ) < τn ·maxA q. Thus, the updated distortion
vector q′ = q · γ is (L′, κn

τn
)-balanced for some set L′ containing L.

If L′ ̸= L, the argument is straightforward. Otherwise, the quick escape property
of the walk implies that there exist τ > 1 and ϵ > 0 such that, with probability
greater than ϵ, the random walk starts with a path γ′ where a letter α ∈ L and
a letter β /∈ L satisfy (q′ · γ′)β ≥ 1

B
· q′α before q′ jumps by τ . Consequently,

(q′ · γ′)β ≥ 1
B

· τn
κn

· maxA q
′, ensuring that Mκn+1

L′ holds with κn+1 = κn · B
τn

,

τn+1 = τn · τ , and L′ = L ∪ {β} before J τn+1 .
For at least 1

|A| of the paths, the sets L′ share a common letter β. Using the

chain rule (5), we establish the induction step for n+ 1 with ϵn+1 = ϵn · ϵ
|A| .

Let Eγ∗ denote the property that γ∗ as a suffix of the path. In other words, γ
satisfies Eγ∗ if it can be factored as γ = γ0 · γ∗ for some finite path γ0.

Corollary 2.7. If a vector memory random walk is quickly escaping then, for all
finite paths γ∗ in the graph, there exist K > 1 and ϵ > 0 such that for all q ∈ RA

+

and all v ∈ V ,
Pv
q(Eγ∗ < JK) > ϵ.

Proof. Let τ, κ and ϵ be as defined in the conclusion of Lemma 2.6. Consider γγγ ∈
Π(v) such that M(γγγ) < J τ (γγγ). Let n := M(γγγ) which is almost surely finite by
Remark 2.2. Define Γ to be the induced set of finite paths γγγn. This set if such that
none of its paths is prefix of another.

We consider in the following a path γ ∈ Γ. Observe that by device

min(q · γ) ≥ 1

κ
·max q >

1

τ · κ ·max q · γ.

Thus the distortion vector q′ := q · γ is τ ′-balanced for τ ′ = τ · κ.
Let v0 be the starting vertex of γ∗. By the strong connectivity hypothesis, there

exists a path γ0 ∈ Π(v · γ), with a length bounded by the diameter of the graph,
from the vertex v′ := v · γ to v0. By Proposition 2.4, there exists ϵ′, depending only
on τ, κ and the lengths of γ and γ0, such that

Pv′
q′ (γ0 · γ∗) > ϵ′.

For sufficiently large K, independent of γ, any such path γ0 · γ∗ does not jump
by a factor of K on a τ ′-balanced distortion vector. Hence,

Pv′
q′

(
Eγ∗ < JK

)
≥ Pv′

q′ (γ0 · γ∗).
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If a path γt satisfies Eγ∗ , then so does γ · γt and if the path γ · γt jumps by τK,
then γt must jump by at least K, since γ jumps by less than τ . Hence, with notation
of Proposition 1.10, we have γ−1Eγ∗ ≤ Eγ∗ and JK ≤ γ−1J τK . By the chain rule

Pv
q

(
Eγ∗ < J τK

)
≥
∑
γ∈Γ

Pv
q (γ) · Pv

q

(
Eγ∗ < J τK | γ

)
≥
∑
γ∈Γ

Pv
q (γ) · Pv′

q′

(
Eγ∗ < JK

)
≥ ϵ · ϵ′.

Proposition 2.8. If a vector memory random walk is quickly escaping, then for all
finite paths γ∗ ∈ Π(v0) and all v ∈ V ,

Pv
q(Eγ∗ <∞) = 1.

Proof. We have by the above corollary Pv
q(Eγ∗ ≥ JK) ≤ 1− ϵ and for all n > 0

Pv
q(Eγ∗ ≥ JKn

) ≤ (1− ϵ)n.

Letting n tend to ∞, we obtain

Pv
q(Eγ∗ = ∞) = 0.

Remark 2.9. In particular one can define, almost everywhere, a first return map
for the win-lose induction to the subsimplex of parameters whose path starts with γ∗.
This is what is done in subsection 3.1 where we show that this acceleration of the
algorithm is uniformly expanding. This characteristic, in turn, implies the ergodicity
of both the acceleration and the initial induction. Such an acceleration serves as the
initial step for the dynamical analysis of the algorithm, wherein the distortion will
no longer influence the dynamics.

The subsequent estimate presents a discrete counterpart of an exponential tail
property which will play a key role in applying thermodynamic formalism in the
subsequent section. It suggests that return times for the mentioned acceleration of
the induction can be though of as essentially bounded.

While we state the result for arbitrary distortion, we will only apply it to one
specific vector, namely 1 := (1, . . . , 1) at each coordinate. As mentioned in the
previous remark, distortion was instrumental in deriving such a structural result
but will no longer be relevant in the thermodynamic study.

Corollary 2.10. If a vector memory random walk is quickly escaping then for any
path γ∗ there exists C > 1, η > 0 such that for all v ∈ V0, τ > 1 and all q ∈ RA

+

Pv
q(J τ ≤ Eγ∗) < C · τ−η.

Proof. Consider K and ϵ as in the previous corollary. Let τ > 1 and n =
⌈

log τ
logK

⌉
,

Pv
q(J τ ≤ Eγ∗) ≤ Pv

q(JKn

≤ Eγ∗) ≤ (1− ϵ)n ≤ (1− ϵ)
log τ
log K

−1
.

Hence, for C > 1
1−ϵ

and η = − log(1−ϵ)
logK

, we have

Pv
q(J τ ≤ Eγ∗) < C · τ−η.
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2.2 Criterion

We start with a simple example of a subgraph in a win-lose induction which prevents
a vector memory random walk to be quickly escaping. This serves as a motivation
for a criterion on subgraphs that induces quick escape property, as introduced in
what follows.

2.2.1 Counter example

Assume a graph defining a win-lose induction admits a vertex v with three outgoing
edges as in Figure 5. Where the edge labeled δ points to any vertex in the graph.

• αβ

δ

Figure 5: A stable subgraph

Consider the stopping time Lδ, which corresponds to the property that δ loses
at the last step. The following lemma states that if the ratio between qδ and qα or
qβ is large enough, then the probability that a path leaves the subgraph in finite
time is small.

Proposition 2.11. For all q ∈ RA
+

Pv
q(Lδ <∞) ≤ (ϕ+ ϕ−1) · qδ

min(qα, qβ)

where ϕ is the golden ratio.

Proof. Let us assume that qβ ≤ qα. Notice that

Pv
q(δ | β or δ) =

qδ
qδ + qβ

≤ qδ
qβ
.

Let Wα be the property on finite paths that the letter α wins at the last step. As
qδ is unchanged before it loses and qβ is non-decreasing, using the chain rule (5),

Pv
q(Lδ < Lβ) =

∞∑
n=0

Pv
q(Wα = n+ 1) · Pv

qMn
α
(δ | β or δ) ≤ qδ

qβ
.

Let us define q(0) and q(1) to be equal to q and for a sequence of finite paths
γ1, γ2, . . . such that the last step is the only one where β loses, which factors a
random infinite path γγγ. In the induced distortion vector q(2) = γ · q(1) we have
q
(2)
β ≥ q

(1)
α + q

(1)
β = q

(1)
α + q

(0)
β ≥ q

(1)
α = q

(2)
α . Switching α and β, we start again with

q
(2)
α ≤ q

(2)
β and define, for γ the finite path such that the last step is the only one

where α loses, q(3) = γ · q(1) where q
(3)
α ≥ q

(2)
β + q

(2)
α = q

(2)
β + q

(1)
α ≥ q

(2)
β = q

(3)
β .
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Let Fn be the Fibonacci sequence such that F0 = F1 = 1 and Fn+2 = Fn+1+Fn.
Hence, we construct a sequence of distortion vectors q(n) such that for odd n, qβ ≤ qα

and
q
(n)
β

qβ
≥ Fn and for even n, qα ≤ qβ and q

(n)
α
qβ

≥ Fn.

Using the chain rule,

Pv
q(Lδ <∞) ≤ qδ

q
(1)
β

+
qδ

q
(2)
α

+
qδ

q
(3)
β

+ · · · ≤ qδ
qβ

·
∞∑

n=1

F−1
n .

To compute this sum, notice that for ϕ the golden ratio, v1 = (1, ϕ) and v2 =
(1,−ϕ−1) are eigenvectors of eigenvalues ϕ and −ϕ−1 for the matrix associated to
the Fibonacci sequence. And ϕv1+ϕ

−1v2 = (ϕ+ϕ−1, ϕ+ϕ−1). Hence, for all n ≥ 0,

Fn =
ϕn+1 − (−ϕ−1)n+1

ϕ+ ϕ−1
and

∞∑
n=1

F−1
n ≤ (ϕ+ ϕ−1) ·

∞∑
n=1

ϕ−n−1 = ϕ+ ϕ−1.

This proposition implies that when qδ is sufficiently small compared to qα and
qβ , there is a positive probability that the path in the graph remains indefinitely
trapped within the two loops of the subgraph shown in Figure 5.

This stability phenomenon arises from the presence of a subgraph of edges labeled
in a subset L with large distortions which interact with each other. This interaction
causes the distortion within L to increase exponentially, while the distortion of
labels outside L remains constant. As a result, the probability for a label exiting
the subgraph to lose in finite time adds up to a value strictly less than 1.

2.2.2 Kerckhoff lemma

We now describe a phenomenon on vector memory random walks first described
by Kerckhoff in [Ker85] and enriched in [AGY06] both in the specific setting of
Rauzy–Veech induction. We generalize it to the case when the base graph satisfies
certain conditions, that we call quick escape property, thus preventing the scenario
discussed in the previous subsection from occurring.

Let α ∈ A, q ∈ RA
+ , and τ > 1. For a finite path γ, we define the following

properties:

• Wα: holds if the letter α wins along the path.

• J τ
α,q: holds if the distortion vector q jumps by a factor of τ along γ, i.e.

(q · γ)α ≥ τ · qα.

When computing a probability Pv
q we simply write J τ

α when distortion vector
is the same.

For L ⊂ A, we generalize:

• WL: holds if a letter in L wins along the path.

• J τ
L,q: holds if ∏

L

(q · γ)α ≥ τ ·
∏
L

qα.

Under Standing Assumption 2.1 we have the following key lemma.
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Lemma 2.12 (Kerckhoff lemma). For all τ > 1, q ∈ RA
+ and all vertex v ∈ V0,

the probability that the vector q jumps by τ on a coordinate in L before a letter in L
wins satisfies

Pv
q

(
WL ≤ min

L
J τ

α

)
> 1− 1

τσ|L| .

This result indicates that even when a subset of letters has a large distortion,
there exists a lower bound on the probability for winning in a reasonable amount of
time, implying that it should happen eventually almost surely. When such an event
occurs and the winning letter has a small distortion compared to the losing one, it
effectively balances the distortion vector. Therefore, by imposing conditions on the
graph that favor such subsets of letters with large distortions to win against those
with smaller distortions, we can induce the quickly escaping property in the random
walk. This forms the core of the next subsection.

Proof of Kerckhoff lemma. We start by describing the argument in the case where
L = {α}.

let Wk
α be the property on a finite path γ that the letter α is wins along γ or its

length satisfies |γ| ≥ k. We prove by induction on k that for all k ∈ N and τ > 0

Pv
q

(
J τ

α <Wk
α

)
≤ 1

τσ
.

When τ ≤ 1 this property is clearly satisfied, we then assume τ > 1 in the
following. For k = 1, since the stopping time associated to W1

α is bounded by 1 and
J τ

α is positive for τ > 1, we have Pv
q

(
J τ

α <W1
α

)
= 0 ≤ 1/τσ.

Assume now that the inequality is true for some k ≥ 1. If α wins along e, the
stopping time associated to Wk+1

α is 1 and Pv
q (J τ

α < 1) = 0. Hence

Pv
q

(
J τ

α <Wk+1
α

)
=
∑

e̸∈Wα

Pv
q

(
J τ

α <Wk+1
α | e

)
· Pv

q(e)

Notice that e−1J τ
α,q = J τ ′

α,q·e and if e does not satisfy Wα, e
−1Wk+1

α = Wk
α with

τ ′ = τ · qα
(q · e)α

. Thus by Proposition 1.10 and relation (6)

Pv
q

(
J τ

α,q <Wk+1
α | e

)
= Pv′

q·e

(
J τ ′

α,q·e <Wk
α

)
.

The recurrence hypothesis applied to the constant τ ′ implies

Pv
q

(
J τ

α,q <Wk+1
α | e

)
≤ 1

τσ
·
(
(q · e)α
qα

)σ

.

If there is an edge e going out of v labeled by α, then every other edge must
satisfy Wα. By assumptions (K)-b. and Proposition 1.9

Pv
q

(
J τ

α <Wk+1
α

)
≤ 1

τσ
·
(
(q · e)α
qα

)σ

· Pv
q(e) ≤

1

τσ
.

On the contrary, if the label α does not appear in l(Ev) we have, by assumption
(K)-a., (q · e)α = qα and

Pv
q

(
J τ

α <Wk+1
α

)
≤
∑

e̸∈Wα

1

τσ
· Pv

q(e) =
1

τσ
.
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Hence

lim
k→∞

Pv
q

(
J τ

α <Wk
α

)
= Pv

q (J τ
α <Wα) ≤

1

τσ
.

For the general setting, we apply the same reasoning to prove by induction
on k that Pv

q

(
J τ

L,q <Wk
L
)

≤ 1
τσ . The theorem then follows from the fact that

minL J τ
α,q ≤ J τ |L|

L,q . For an edge e going out of v,

e−1 (J τ
L,q

)
= J τ ′

L,q·e where τ ′ = τ ·
∏

L qα∏
L(q · e)α

.

If e does not satisfy Wα for any α ∈ L,

e−1
(
Wk+1

L

)
= Wk

L.

The general case then follows, using the same recurrence argument.

As noticed in Remark 1.11, relation (6) still holds for the probability law con-
ditioned by a prefix invariant set of paths. Thus, the lemma can be generalized for
conditional probabilities.

Lemma 2.13 (Conditional Kerckhoff lemma). Assume C is a set of paths of non-
zero measure such that for all path γ, γ−1C = C almost surely. For all τ > 1, q ∈ RA

+

and all vertex v ∈ V0, the probability that the vector q jumps by τ on a coordinate in
L before a letter in L wins satisfies

Pv
q

(
WL ≤ min

L
J τ

α | C
)
> 1− 1

τσ|L| .

2.2.3 A first criterion

The main idea here is to consider degeneration of the induction where for some
subsets of labels L ⊂ A the distortion vector at these corresponding coordinates is
infinitely larger than for others. In particular, when we are on a vertex that has an
outgoing edge labeled in L, any edges with a label outside of L will almost surely
not be chosen.

Let us denote by GL the subgraph of G, with the same set of vertices V but for
which we remove edges along which a letter in L wins against a letter not in L. The
set of outgoing edges of a vertex v ∈ V is denoted by EL

v in GL and is defined as
follows.

• If there is at least one edge in the outgoing edges Ev labeled in L,

EL
v = {e ∈ Ev | l(e) ∈ L},

• Otherwise,
EL

v = Ev.

Definition 2.14. We say that the base graph G of a vector memory random walk is
non-degenerating if for all ∅ ⊊ L ⊊ A and all v in a strongly connected component
C of GL one of these properties is true

1. There is a path from v leaving C in which each edge is labeled in L.
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2. |l(Ev) ∩ L| ≤ 1.

In plain words, this property states that from any vertex, no letter in L can win
against another letter in L in any strongly connected component of GL except if
there is a path labeled in L leaving the component.

It is satisfied by a very large class of examples such as the Rauzy–Veech induction
and most of multidimensional continued fractions algorithms as showed in [Fou25b]
and will be the reason for their ergodicity and several other interesting dynamical
properties.

To link our work with previous studies of Rauzy–Veech induction, we include a
proof of the fact that Rauzy–Veech induction satisfies this property. This aims to
provide some connections for a reader who is familiar with this setting. For more
detailed discussions, see [Fou25a].

Proposition 2.15. The connected component of the Rauzy diagram associated to
an irreducible permutation is non-degenerating.

Proof. In the degenerate subgraph GL, a subset of labels L always loses against
labels in its complementary set L. If an interval labeled in L is at the right-hand
side extremity (for induction on the right) of the interval exchange it can only lose to
a letter in L thus there will always remain an interval labeled in L at the extremity
after an arbitrary number of steps. In such a configuration, we cannot have two
letters in L playing with each other.

Moreover, it is well known that on an irreducible Rauzy–Veech induction, all
letter must win infinitely many times since the length of the interval must go to
zero. Thus if the two extremal intervals are labeled in L then there is a path labeled
in L to an interval exchange with an extremal interval labeled in L.

As an illustration, the reader can check directly these properties on the Rauzy
diagram for 3-interval exchange transformations represented on Figure 6 as a win-
lose induction.

Notice that our representation of Rauzy diagrams is slightly different from the
classical representation where edges are labeled by the words top or bottom telling
which of the top or bottom interval wins whereas we label edges by the correspond-
ing losing letter.

(
1 2 3
3 2 1

)(
1 3 2
3 2 1

) (
1 2 3
3 1 2

)1

2

3

2

31

Figure 6: Rauzy diagram for 3-IET.

Remark. The fully subtractive algorithm in dimension 3 or larger is described in
[Fou25b] as the graph with a single vertex and edges looping. It provides a simple
example of a win-lose induction that is neither non-degenerating nor quickly es-
caping nor ergodic. The Poincaré algorithm in dimension 4 is a case that is not
non-degenerating but is conjecturally ergodic.

23



We now have all the ingredients to show one of our main theorems.

Theorem 2.16. Assume a vector memory random walk satisfies that there exists
τ > 1 such that for all α ∈ A, every vertex v, and any distortion vector q, we have
Pv
q(J τ

α < ∞) = 1. If the base graph is non-degenerating, then the random walk is
quickly escaping.

Let C be a strongly connected component of GL. We define the property SC
L to

be true if the path satisfies SL (introduced in Section 2.1) or if it goes through an
edge that is not in C . In other words, the stopping time corresponds to the state
when the value of the distortion on a coordinate in A \ L reaches (up to factor B)
the level of the initial distortion on L or leaves the strongly connected component
C .

Proposition 2.17. Consider a vector memory random walk satisfying the assump-
tions of the theorem. Let C be a strongly connected component of GL for a subset
∅ ⊊ L ⊊ A. For all vertex v in C , there exists τ > 1 such that for any K > 1 and q
(L,K)-balanced distortion vector

Pv
q(SC

L ≤ J τ2

) >

(
1− 1

τσ|L|

)
·
(

1

A|C | · τK

)|C |

where A is the constant in hypothesis (H3) and |C | is the number of vertices in C .

Proof. First, assume v satisfies Item 1 in Definition 2.14. Then there exists a finite
path starting at v and leaving C via edges labeled in L. Removing loops, we can
assume it has at most |C | steps. By Proposition 2.4,

Pv
q(SC

L ≤ J τ ) >

(
1

A|C | ·K

)|C |

.

Assume now that v ∈ C ′, where C ′ is the subgraph of C comprising vertices
satisfying Item 2 in Definition 2.14 and edges between them. If a finite path satisfies
SC ′
L before J τ but not SC

L , it implies that it terminates at a vertex within C but
not within C ′, thus coming back to the first case considered above. Moreover, as J τ

has not occurred yet, the vector remains (L, τK)-balanced, and thus the probability

of SC
L happening before J τ is bounded from below by

(
1

A|C | · τK

)|C |

. Hence, we

have

Pv
q(SC

L ≤ J τ2

) > Pv
q(SC ′

L ≤ J τ ) ·
(

1

|A||C | · τK

)|C |

.

According to Lemma 2.12, for all τ > 1

Pv
q

(
WL ≤ min

α∈L
J τ

α

)
> 1− 1

τσ|L| .

The proposition then follows from

Pv
q(SC ′

L ≤ J τ ) ≥ Pv
q

(
WL ≤ min

α∈L
J τ

α

)
.

We prove this inequality by showing inclusion of the events. Assume an infinite path
γγγ satisfies WL before minα∈L J τ

α . If minL J τ
α > J τ then a letter in L becomes the

largest letter at the time of the jump J τ thus SL is satisfied and SC ′
L ≤ J τ . If

minL J τ
α ≤ J τ , consider the time m = WL(γγγ). The assumption of the theorem on

finite jumping times implies that m is almost surely finite. If the path leaves C ′
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before time WL(γγγ) ≤ J τ , we are done. Otherwise, at time m, the winning letter

in L must win against a letter in L and SC ′
L is satisfied, as noticed in Remark 2.5.

Thus SC ′
L ≤ WL ≤ J τ .

Remark 2.18. Notice that, in the proof, we only used Kerckhoff lemma on vertices
in C ′ not satisfying Item 1 of Definition 2.14 and for (L,K)-balanced distortion
vectors. Thus we only need to check inequality in assumption (K)-b. for these cases.
This refinement will be discussed in Section 2.2.4.

We can associate to G a directed acyclic graph which vertices are labeled by
strongly connected components and for which we draw an edge between two vertices
if there is an edge connecting the two strongly connected components in the graph.
It is classically called the condensation graph of a directed graph (see for instance
section 3.4 of [BM08]). There are minimal vertices in this acyclic graph which have
no outgoing edges. Vertices in the corresponding strongly connected components,
called the minimal component, have no edges pointing to another strongly connected
component in G.

We conclude the proof of the theorem by induction on the height within the
condensation graph of the given strongly connected component, i.e. its distance to
the minimal vertices.

Proof of Theorem 2.16. Let H be the maximal height in the condensation graph of
G. Let ∅ ⊊ L ⊊ A and K > 1. The previous proposition implies that there exists
τ > 1 and ϵ0 > 0 such that for every strongly connected component C of GL and
every vertex v in C , if q is (L, τHK)-balanced,

Pv
q

(
SC
L < J τ

)
> ϵ0. (8)

The inequality can be made strict between the two stopping times simply by in-
creasing τ .

We prove the following property by induction on h ∈ {0, . . . , H} :
if v is in a strongly connected component of height h in the condensation graph then
for all q (L, τH−hK)-balanced distortion vector

Pv
q

(
SL < J τh+1

)
> ϵh+1

0 .

Initialization If h = 0, v is in a minimal strongly connected component C for
which no edges in GL are going out of the component thus SC

L = SL and inequality
(8) implies the induction property.

Induction Assume the property is satisfied for h < H. Let v be in a component
C of height h + 1 and q a (L, τH−(h+1)K)-balanced — thus (L, τHK)-balanced —
distortion vector. By Equation (8), a path γγγ satisfies SC

L < J τ with probability
larger than ϵ0. Let us consider γ the (almost surely) finite prefix of γγγ up to time SL.

If SL = SC
L the path directly satisfies SL < J τh+2

. Otherwise, SL > SC
L and

at time SC
L the path must go through an edge in GL that leaves the component

C to another strongly connected component C ′ of height h. In this case, q′ :=

qMγ is (L, τH−hK)-balanced, γ−1SL,q = SL,q′ and γ−1J τh+2

q ≥ J τh+1

q′ . Hence, by
recurrence hypothesis,

Pv
q

(
SL < J τh+2

| γ
)
≥ Pv′

q′

(
SL < J τh+1

)
> ϵh+1

0
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where v′ = v · γ ∈ C ′. Using the chain rule (5),

Pv
q

(
SL < J τh+2

)
> ϵh+2

0 .

Let CL be the set of paths such that for all τ > 1 and all α ∈ L we have J τ
α <∞.

Then for any γs finite path in G we have γ−1
s C = C. Thus if CL has non-zero

measure, the probability law conditioned by CL satisfies the conditional Kerckhoff
Lemma 2.13 and the same proof applies.

Proposition 2.19. Let ∅ ⊊ L ⊊ A such that the set CL has non-zero measure. For
all ∅ ⊊ L′ ⊆ L and all K > 1, there exist τ > 1 and ϵ > 0 such that for all vertex
v ∈ V and all (L′,K)-balanced distortion vector q ∈ RA

+

Pv
q(SL′ < J τ | CL) > ϵ.

Corollary 2.20. If the base graph of a vector memory random walk is non-degenerating
then every vertex v, and any distortion vector q, we have Pv

q(CA) = 1. Thus the ran-
dom walk is quickly escaping.

Proof. Let L be as in the proposition and Mκ
L′ denote (changing A to L in the

previous definition) the property of a finite path γ for which

κ ·min
L′

{q · γ} ≥ max
L

q.

Using the same argument as in Lemma 2.6, we show by induction that for each
n ≤ |L|, there exist constants τn > 1, κn > 0, and ϵn > 0 such that for every vertex
v and every distortion vector q, there exists a subset L′ ⊂ L with |L′| = n that
satisfies:

Pv
q(Mκn

L′ < J τn | CL) > ϵn.

With an extra step of induction, there exists β ∈ A \ L, τ > 1, κ > 0, and ϵ > 0
such that

Pv
q(Mκ

L∪{β} < J τ | CL) > ϵ.

This implies that there exists β ∈ A \ L such that Pv
q(CL∪{β} | CL) = 1. Thus,

using the chain rule, for all α ∈ A such that C{α} has non-zero Lebesgue measure,
Pv
q(CA | C{α}) = 1 and finally Pv

q(CA) = Pv
q

(⋃
α∈A C{α}

)
= 1 where the last equality

follows from Remark 2.2.

Remark 2.21. The non-degenerating assumption implies that the graph cannot be
labeled by a strict subset L of A. Indeed, if we consider a minimal connected compo-
nent, the only way it satisfies Item 2 of non-degenerating property would be to have
only one outgoing edge at each vertex contradicting the Standing Assumptions 2.1.

2.2.4 Case of vertices with a unique outgoing edge

In the following, we try to weaken the second assumption together with (K) of
Standing Assumptions 2.1.

Assume there exists vertices with a unique outgoing edges in the base graph G.
As mentioned in Section 1.2.2, one prefer to consider the accelerated random walk
which continues as long as the end vertex has a unique outgoing edge: Nevertheless,
such accelerated random walks do not usually satisfy hypothesis (K) even when G

26



does. We show that Properties (K)-a. and (K)-b. on such graphs can be relaxed
to Properties (P2) and (P3) in the following generalized non-degenerating graph
definition. These weaker properties still imply quick escape property and have the
advantage that they can be checked as a graph property for induced random walks
on subgraph of G which satisfies (K).

We introduce a generalized definition of the non-degenerating property. Recall
that we say v ∈ V is a branching vertex if it has two or more outgoing edges. A
path which start and end vertices, and only them two, belong to V̂ is called a branch
path. The label of such a path refers to the label of its first edge.

Definition 2.22. The base graph G of a vector memory random walk is called non-
degenerating if, for all ∅ ⊊ L ⊊ A and every branch path γ contained in a strongly
connected component C of GL, one of these properties is true.

(P1) There exists a path in G starting at a vertex of γ which leaves C and such that
each edge based at a branching vertex in the path is labeled in L.

(P2) The branch path γ acts trivially on coordinates in L of a distortion vector.

(P3) There are no other branch path than γ starting from the same vertex v and
contained in GL. Moreover, there exists M > 1 such that for all α ∈ L and all
(L,K)-balanced distortion vector q ∈ RA

+

(q · γ)α ≤ qα +M ·
∑

β∈l(Ev)
β ̸=l(γ)

qβ .

As for Property (K)-b., Property (P3) implies a bound on probability of the
corresponding branch path by its increase in distortion.

Proposition 2.23. If a branch path γ satisfies Property (P3) then for all K > 1,
there exists σ > 0 such that for all (L,K)-balanced distortion vector q ∈ RA

+,

Pv
q(γ) ≤

( ∏
L qα∏

L(q · γ)α

)σ

.

Proof. Let α be the label of γ and Q =
∑

β∈l(Ev)
qβ . Let us prove that there exists

σ > 0 such that for all δ ∈ L,

qα
Q

≤
(

qδ
(q · γ)δ

)σ

.

The proof is similar to the one of Proposition 1.9. As q is (L,K)-balanced and δ
belongs to L, qα ≤ Kqδ, thus

qα
Q

=
1

1 +
Q− qα
qα

≤ qδ
qδ +K−1(Q− qα)

.

Moreover, by assumption (P3),
qδ

qδ +M(Q− qα)
≤ qδ

(q · γ)δ
then one is looking for

σ > 0 such that

qδ
qδ +K−1 (Q− qα)

≤
(

qδ
qδ +M(Q− qα)

)σ

⇐⇒ log(1+K−1Q− qα
qδ

) ≥ σ log

(
1 +M · Q− qα

qδ

)
.
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As M · Q−qα
qδ

≥ log(1 +M · Q−qα
qδ

), one only has to find σ such that

log

(
1 +K−1Q− qα

qδ

)
≥ σM · Q− qα

qδ
.

As
Q− qα
qδ

≤ K · |A|, by concavity of log(1 + x),

log

(
1 +K−1 · Q− qα

qδ

)
≥ log(1 + |A|) · 1

|A| ·K
−1 · Q− qα

qδ

thus one only has to pick σ ≤ log(1+|A|)
M·K·|A| . We conclude by observing that

Pv
q(γ) =

qα
Q

≤
( ∏

L qδ∏
L(q · γ)δ

) σ
|A|

.

Any finite path in G from and to a branching vertex can be decomposed as a
unique sequence of branch paths γ1 . . . γn. We define stopping times at branching
vertices for index n, characterized by the following properties :

• Wα, WL: holds if the letter α or a letter in L wins along the path.

• J τ
α,q: holds if the distortion vector q jumps by a factor of τ along γ1 . . . γn, i.e.

(q · γ1 . . . γn)α ≥ τ · qα.

Let C be a strongly connected component in GL, and C ′ be the subcomponent in
which vertices satisfying (P1) are removed (as well as the edges pointing to them).

We define a stopping time associated to the property WC ′
α which holds if Wα is

satisfied or the path visits an edge outside of C ′.

The same results, namely Theorem 2.16 and Corollary 2.20, then follow from a
refined version of Kerckhoff lemma.

Lemma 2.24 (Refined Kerckhoff lemma). Let v be a vertex in C ′. For all τ > 1
and q ∈ RA

+, the probability that the vector q jumps by τ on a coordinate in L, before
a letter in L wins or the path leaves C ′, satisfies

Pv
q

(
WC ′

L ≤ min
L

J τ
α

)
> 1− 1

τσ|L| .

Proof. As in Lemma 2.12, let (WC ′
L )k be the property for a path γ = γ1 . . . γn to

satisfy WC ′
L or n ≥ k. We prove similarly by induction that

Pv
q

(
J τ

L,q <
(
WC ′

L

)k)
≤ 1

τσ|L| .
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A graph criterion This non-degenerating property can be checked by a graph
property for well chosen subgraphs of a vector memory random walk satisfying as-
sumption (K). For clarity in the following, we denote the graph as G = (V,E) and
subgraph F = (V F , EF ).

Consider a vector memory random walk that satisfies assumption (K) and such
that its base graph G has no vertex with less than two outgoing edges. Let F be a
subgraph of G such that all its removed edges start from a vertex that has a unique
outgoing edge in F .

Definition 2.25. A subgraph F is called admissible if for any ∅ ⊊ L ⊊ A, every
branch path γ contained in a strongly connected component C of FL, starting at a
vertex v, satisfies one of the following properties.

(P1) There exists a path in F starting at a vertex of γ which leaves C and such that
each edge based at a branching vertex of F is labeled in L.

(PK
2 ) All edges in γ are labeled within G by letters not in L.

(PK
3 ) The branch path γ is labeled by λ ∈ L and L ∩ l(EF

v ) = {λ}. Moreover, for
every edge of G in γ labeled in L, the removed edges in F going out of the
starting vertex for this edge are labeled in l(EF

v ) \ {λ}.
Proposition 2.26. Properties (PK

2 ) and (PK
3 ) imply (P2) and (P3) respectively. In

other words, an admissible subgraph is non-degenerating.

2.2.5 Finer factorizations

The previous weaker condition has introduced the idea of integrating hypothesis (K)
into a graph condition. However, for applications, another weaker criterion is needed
on factorizations generalizing the acceleration to branching vertices. This section
requires additional notation and may feel more technical, but all the key ideas and
arguments have already been developed in the preceding sections. Hopefully, by this
point, they will have become intuitive to the reader.

Definition 2.27. Consider, for all ∅ ⊊ L ⊊ A, a subset Ṽ L of vertices of GL such
that every loop in this subgraph contains a vertex in Ṽ L.

Let ẼL be the set of finite paths in GL for which the start and end vertex belong
to Ṽ L and no other visited vertices do. Paths in ẼL are called L-factor paths.

We say the collection {Ṽ L} is a filling factoring family if every L-factor path γ
visits at most one branching vertex v satisfying l(Ev) ∩ L ̸= ∅ which is not the end
vertex of γ.

Remark. Notice that the branch path in the previous subsection correspond to factor
paths where Ṽ L is the set of branching vertices for all L.

A L-factor path of a filling factoring family can be uniquely decomposed as
γ = γs · γt, where γs ends at this unique visited branching vertex v, when it exists,
or is empty if there is no such vertex.

Definition 2.28. A filling factoring family {Ṽ L} with ∅ ⊊ L ⊊ A is a non-
degenerating factorization of G if there exists M,C > 1 such that every L-factor
path γ = γs · γt contained in a strongly connected component C of GL satisfies one
of (P1), (P2), or:
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(P̃3) There is a decomposition L = L1⊔L2 such that if γ is going through a branching
vertex v, then it is the unique L-factor path going through v and the label of the
edge in the path based at v is contained in L1. Moreover, for all (L,K)-balanced
distortion vector q ∈ RA

+

(q · γ)α ≤ qα +M ·
∑

β∈l(Ev)
β ̸=l(γ)

(q · γs)β . for all α ∈ L1 (9)

and ∑
α∈L2

(q · γ)α − qα ≤ C ·
∑
β/∈L

(q · γ)β − qβ . (10)

These two equations give different counter parts for the growth of the distor-
tion on L. On one hand, the increase on a coordinate in L1 is compensated by
the probability that this letter wins, as used before in Kerckhoff lemma. On the
other hand, an increase on L2 implies a comparable increase on coordinates in the
complementary set of L approaching the balancing event SL. This will be the heart
of the Kerckhoff lemma in this refined setting.

Let us define for δ > 0 a property Dδ
L,q which is satisfied when∑

β/∈L

(q · γ)β − qβ ≥ log δ ·min
α∈L

qα.

Proposition 2.29. For γ as in (P̃3) we have for σ ≤ 1
C·|A|

γ−1Dδ
L,q ≤ Dδ′

L,q·γ with δ′ = δ ·

( ∏
L2
qα∏

L2
(q · γ)α

)σ

.

Proof. Let ρ ≥ 0 such that eρ =

∏
L2

(q · γ)α∏
L2
qα

.

There exists α ∈ L2 such that (q · γ)α ≥ e
ρ

|A| · qα, and by (10),∑
β/∈L

(q · γ)β − qβ ≥ 1

C
· (e

ρ
|A| − 1) · qα ≥ ρ

C · |A| ·min
α∈L

qα.

If γ′ satisfies Dδ′
L,q·γ ,∑

β/∈L

(q · γ · γ′)β − (q · γ)β ≥ log δ′ ·min
α∈L

(q · γ)α ≥ log δ′ ·min
α∈L

qα

and ∑
β/∈L

(q · γ · γ′)β − qβ ≥ log
(
δ′ · e

ρ
C·|A|

)
·min
α∈L

qα

thus γ · γ′ satisfies Dδ
L,q.

We show a bound similar to Proposition 2.23.

Proposition 2.30. If a L-factor path γ = γs ·γt satisfies Property (P̃3) in the latter
definition, we have for some σ > 0 and all (L,K)-balanced distortion vector q ∈ RA

+,

Pv
q(γ) ≤

( ∏
L1
qα∏

L1
(q · γ)α

)σ

· Pv
q(γs).
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Proof. Let α be the label of the first edge of γt. The probability of going through γ
is determined by the choice at its branching vertex

Pv
q(γ) =

(q · γs)α∑
β∈l(Ev)

(q · γs)β
· Pv

q(γs).

Observe that by (H3) and the fact that q is (L,K)-balanced, assuming M ≥ A|V |,
there exists 0 ≤ a ≤M · qα such that

(q · γs)α∑
β∈l(Ev)

(q · γs)β
=

qα + a

qα +
∑

β∈l(Ev)
β ̸=α

(q · γs)β + a

Let us denote, for readability, q = qα and Q = qα +
∑

β∈l(Ev)
β ̸=α

(q · γs)β . We show that

for all a ≤M · q and q ≤ Q, there exists σ1 > 0 such that

q + a

Q+ a
≤
(
q

Q

)σ1

.

First, notice that q+a
Q+a

≤ q+M·q
Q+M·q since the expression is increasing with respect to a.

Now,

q +M · q
Q+M · q ≤

(
q

Q

)σ1

⇐⇒ (1 +M) ·
(
q

Q

)1−σ1

≤ 1 +M · q
Q
.

A study of the function (1+M)·x1−σ1 −M ·x for x ∈ [0, 1] shows that this inequality
is true for σ1 ≤ 1

1+M
.

So we have Pv
q(γ) ≤

(
qα
Q

)σ1

· Pv
q(γs). By the same argument as in Proposi-

tion 2.23, we have σ2 > 0 such that for all δ ∈ L1,

qα
Q

≤
(

qδ
(q · γ)δ

)σ2

.

We then conclude taking σ = σ1 · σ2/|L1|.

Proposition 2.31. A refined Kerckhoff lemma on the factorized paths holds and so
does its consequence Proposition 2.17 as well as Theorem 2.16 and Corollary 2.20
derived from it.

Proof. To consider the two phenomenon of (P̃3) jointly, we define for δ > 0, the

stopping time Hδ
L as the minimum between Dδ

L,q and WC ′
L . Here again, let (Hδ

L)
k

be the property for a path γ = γ1 . . . γn to satisfy Hδ
L or n ≥ k.

We show a Kerckhoff lemma refined with this new compensating phenomenon.
For all τ > 0, δ > 0 and (L,K)-balanced distortion vector q ∈ RA

+

Pv
q

(
J τ

L < Hδ
L

)
≤ δ

τσ
.

First notice that case when τ ≤ 1 is clear, since in this case J τ
L = 0 and either

δ < 1 and Hδ
L = J τ

L = 0 or δ ≥ 1 and δ
τσ ≥ 1. In the following we assume that τ > 1.

Initialization for k = 1 is clear since for τ > 1, Pv
q

(
J τ

L < (Hδ
L)

1
)
= 0.

To show induction, let us decompose ẼL
v = (ẼL

v )
(P1)⊔ (ẼL

v )
(P2)⊔ (ẼL

v )
(P̃3) where

each of these subsets is respectively the subset of paths which satisfy
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• Properties (P1)

• Does not satisfy Properties (P1) but satisfy Property (P2)

• Does not satisfy Properties (P1) and (P2) but satisfy Property (P̃3).

We also define the set of prefixes in the decomposition defined in Proposition 2.30

(ẼL
v )

(P̃3)
s =

{
γs | γ ∈ (ẼL

v )
(P̃3) and γ = γsγt

}
.

Notice that no path in (ẼL
v )

(P̃3)
s is prefix to another one in the same set as well as

not a prefix of a path in (ẼL
v )

(P2). Moreover, for all γs ∈ (ẼL
v )

(P̃3)
s , there is only one

L-factor path γ ∈ (ẼL
v )

(P̃3) such that γs is a prefix of γ. If a path is in (ẼL
v )

(P1)

then it must leave C ′ and satisfies in particular Hδ
L. Applying the chain rule and

splitting cases, together with Proposition 2.30 for the second case, we get

Pv
q

(
J τ

L ≤ (Hδ
L)

k+1
)
≤

∑
γ∈(ẼL

v )(P2)

Pv
q(γ) · Pγ·v

q·γ

(
J τ

L < (Hδ
L)

k
)

+
∑

γs∈(ẼL
v )

(P̃3)
s

( ∏
L1
qα∏

L1
(q · γ)α

)σ

· Pv
q(γs) · Pγ·v

q·γ

(
J τ ′

L < (γ−1Hδ
L)

k
)

where

τ ′ = τ ·
∏

L qα∏
L(q · γ)α

.

By Proposition 2.29, Pγ·v
q·γ

(
J τ ′

L < (γ−1Hδ
L)

k
)
≤ Pγ·v

q·γ

(
J τ ′

L < (Hδ′
L )k

)
with

δ′ = δ ·

( ∏
L2
qα∏

L2
(q · γ)α

)σ

.

Which is bounded, by recurrence hypothesis, by

δ′

(τ ′)σ
=

δ

τσ
·

( ∏
L1
qα∏

L1
(q · γ)α

)−σ

.

Hence

Pv
q

(
J τ

L < (Hδ
L)

k+1
)
≤

 ∑
γ∈(ẼL

v )(P2)

Pv
q(γ) +

∑
γs∈(ẼL

v )
(P̃3)
s

Pv
q(γs)

 δ

τσ
≤ δ

τσ
.

Notice that Dδ
L implies SL when log δ ≥ 2

B
. Thus taking such δ, HL implies SL.

The remaining of the results are then proved by the same arguments as in previous
sections.

A graph criterion Here again, these properties can be checked with graph
properties on a subgraph F of the base graph G of a vector memory random walk
satisfying (K).

Consider a vector memory random walk that satisfies assumption (K) and such
that its base graph G has no vertex with less than two outgoing edges. Let F be a
subgraph of G such that all its removed edges start from a vertex that has a unique
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outgoing edge in F .

Let us denote the set of winning letters against a label α ∈ A along a path γ by

Wα
γ := {β ∈ A | β wins against α along γ} .

This set can be constructed iteratively. Denote by ei the i-th edge of γ which starts
at vertex vi−1. For 1 ≤ n ≤ |γ|, we define Wα

γ (0, n) := {α} and for k ≥ 1

Wα
γ (k, n) :=

{
β ∈ A | ∃1 ≤ i ≤ n, ∃δ ∈Wα

γ (k − 1, i) such that l(ei) = δ and β ∈ Evi−1 \ {δ}
}
.

Definition 1.7 implies a transitivity property: if a letter β wins against α along
γ1 and δ wins against β along γ2 then δ wins against α along γ1 · γ2. In particular,
if α ∈ Eγ·v, for all β ∈ Eγ·v \ {α}, W β

γ ⊂Wα
γ·α.

Moreover, by Remark 1.8 we have under assumption (K),

Wα
γ =

|γ|⋃
k=1

Wα
γ (k, |γ|).

Proposition 2.32. For all path γ in G and label α ∈ A,

(q · γ)α ≤ qα + (M · |γ| · |A|)|γ| ·
∑

β∈Wα
γ

qβ .

Proof. Let γn be the prefix of γ of length n. Assume the proposition is true for
γn−1. Let v be the ending vertex of γn−1 and α be the label of the next edge in
γ. On other labels, (K) implies that the distortion is unchanged. Now, by (K) and
non-decreasing hypothesis (H1),

(q · γn)α ≤ qα +M · n ·
∑

β∈l(Ev)\{α}

(q · γn−1)β

≤ qα +M · n ·

 ∑
β∈l(Ev)\{α}

qβ +Mn−1 · (n− 1)n−1 · |A|n−1 ·
∑

δ∈W
β
γn−1

qβ


≤ qα +M · n ·

(
1 +Mn−1 · (n− 1)n−1 · |A|n

)
·
∑

β∈Wα
γn

qβ

≤ qα + (M · n · |A|)n ·
∑

β∈Wα
γn

qβ

We introduce in this context the following graph property on a L-factor path
γ = γs · γt.
(P̃K

3 ) γ is going through a branching vertex v and there is a splitting L = L1 ⊔ L2

such that if and λ is the label of the first edge of γt then l(E
F
v )∩L = {λ} and

λ ∈ L1. Moreover,

• Each label winning against a letter in L1 along γ is either in l(EF
v ) \ {λ}

or wins against a letter of this set along γs.

• For each label β winning along an edge γj labeled in L2, there exists an
index i such that β wins along the edge γi which is not labeled in L.
Moreover, if i < j, the label β does not lose along the subpath γi . . . γj .
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Proposition 2.33. (P̃K
3 ) implies (P̃3).

Proof. By Proposition 2.32, there is a constant M1 such that for labels in L1

(q · γ)α ≤ qα +M1 ·
∑

β∈Wα
γ

qβ .

The first point of condition (P̃K
3 ) implies that∑

β∈Wα
γ

qβ ≤ B ·
∑

β∈l(EF
v )

β ̸=λ

(q · γs)β .

Inequality (9) is thus satisfied for M ≥ M1 · B. The second condition implies
inequality (10). Indeed, for each edge γj labeled by α in L2, we have, using (K) in
G,

(q · γ1 . . . γj)α − (q · γ1 . . . γj−1)α ≤M ·
∑

β∈l(Ev′ )
β ̸=α

(q · γ1 . . . γj−1)β

where v′ is the ending vertex of γ1 . . . γj−1. For each β in the sum, we have by the
second condition an index i such that

(q·γ1 . . . γj−1)β ≤ (q·γ1 . . . γi−1)β ≤ B·
∑
α/∈L

(q·γ1 . . . γi)α−(q·γ1 . . . γi−1)α ≤ B·
∑
α/∈L

(q·γ)α−qα.

where the second inequality is a consequence of (H4).

3 Simplicial model for linear memory random
walks

In this section we study a particular case of vector memory random walk for which
the action is linear. We will see that some of these random walks have an associated
deterministic dynamical system, defined on intersections of simplices, that we call
simplicial systems. The properties of these two objects are strongly intertwined.

Definition 3.1. Assume that for all edges e in the graph G, there exists a matrix
Me ∈ M|A|×|A|(R+) of determinant ±1 such that for all q ∈ RA

+ and all path γ =
e1 · e2 · · · · · en, the action on q can be expressed as

q · γ = q ·Me1 ·Me2 · · · · ·Men︸ ︷︷ ︸
Mγ

.

We call the induced random walk on G a linear memory random walk.

Recall the notation of projectivized quotient space PA associated to a linear
space A from Section 1.1.

Definition 3.2. Let H = {Hv}v∈V be a family of linear subspaces such that for all
edge e : v → v′,

MeHv′ = Hv.

We say that a linear memory random walk has a simplicial model in the invariant
family H, if for all vertex v ∈ V of the graph there exists a set ∆v ⊆ P (RA

+ ∩ H)
such that

∀ e, e′ ∈ Ev, e ̸= e′ =⇒ Me∆e·v ∩Me′∆e′·v = ∅ and
⊔

e∈Ev

Me∆e·v ⊂ ∆v.
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Many models exist where H is the whole space. It is the case for all continued
fraction algorithms described in [Fou25b]. We will sometimes denote by ∆H

w sets of
a simplicial model to insist on its invariant linear subspaces family, and by dH the
dimension of these subspaces. A concrete example of a non trivial invariant linear
subspaces family is given by Rauzy–Veech induction on linear involutions, for which
the sum of the lengths on the top interval is always equal to the sum on the bottom
interval.

When a linear memory random walk has a simplicial model, one considers the
following parameter space

∆∞(G) =
⊔
v∈V

{v} ×

⋂
n∈N

⋃
γ∈Π(v)
|γ|=n

Mγ∆γ·v

 .

If (v, λ) ∈ ∆∞(G), there exists a unique edge e : v → v′ such that λ ∈ Me∆v′ . We
thus define the map T : ∆∞(G) → ∆∞(G) by

T (v, λ) = (v′,M−1
e λ).

Then, to each point in ∆∞(G) corresponds a unique infinite path in the graph G.
The subset of points starting with a given finite path γ∗ : v → v′ is

∆γ∗ := ({v} ×Mγ∗∆v′) ∩∆∞(G).

We denote by ∆∗(G) the set of points in ∆∞(G) which visit ∆γ∗ infinitely many
times or, in other words, points which associated path contains infinitely many
copies of γ∗ as factors. We can then define the first return map of T on the set
∆∗ := ∆∗(G) ∩∆γ∗ ,

T∗ : ∆∗ → ∆∗.

An illustrative example shedding light on these simplicial models is the fractal
set constructed as a subset of parameters within a simplex, where a win-lose induc-
tion remains confined to a subgraph. This fractal set possesses a simplicial model
by construction, with a subsimplex associated to each finite path. As the length of
paths increases, the union of subsimplices covers progressively less of the entire sim-
plex. Ultimately, this process yields a fractal set with a smaller Hausdorff dimension
in the limit.

In the following, we study the link between the probabilistic behavior of such
linear memory random walk endowed with a simplicial model and the dynamical
properties of T∗.

3.1 A uniformly expanding acceleration

For any two vectors v, w ∈ RA
+ , let

α(v, w) := max
a∈A

va
wa

, β(v, w) := min
a∈A

va
wa

and

d(v, w) := log
α(v, w)

β(v, w)
.

One can check that d is a complete metric on the projectivization of RA
+ called the

Hilbert metric. This metric has the useful feature that any linear map induced by a
positive matrix is contracting with respect to it.

35



Proposition 3.3. For any non-negative matrix M , we have for all v, w ∈ RA
+,

d(Mv,Mw) ≤ d(v, w).

Moreover, if M is positive, there exists θ < 1 such that

d(Mv,Mw) ≤ θd(v, w).

Proof. This is a well known property of Hilbert metrics, the proof can be found e.g.
in Section 2.1 of [Via97].

Hence the map T is expanding with respect to Hilbert metric but not strictly if
the corresponding matrix is not positive. We designate a path γ∗ in G as positive if
Mγ∗ is a positive matrix.

Proposition 3.4. If γ∗ is positive, there exists θ∗ < 1 such that for all x, y ∈ ∆∗

which have the same path in G until they come back to ∆∗(G),

d(T∗x, T∗y) ≥
1

θ∗
d(x, y).

We say that T∗ is uniformly expanding.

Proof of Proposition 3.4. Let γ∗ · γt be the path in G associated to a given point
in ∆∗(G) until its first return. The inverse branch of T along this path is a pro-
jectivization of the linear map Mγ∗Mγt , which is, according to Proposition 3.3, the
composition of a weakly contracting map and a contracting map with coefficient
θ∗ < 1 for the Hilbert metric on ∆. Hence the inverse branch is contracting by a
coefficient θ∗ depending only on γ∗.

We now prove that the non-degenerating property implies the existence of a
positive path.

Proposition 3.5. If a vector memory random walk is non-degenerating, then for all
subset of labels ∅ ⊊ L ⊊ A and from any vertex v there exists a finite path starting
at v such that a letter in L loses against a letter in L at some step.

Proof. Consider C the strongly connected component of GL to which v belongs.
We start by following a path to a minimal strongly connected component C . As in
Remark 2.21, the non-degenerating property implies that C cannot be a minimal
strongly connected component in G. Thus, there exists an edge in G going out of C
on which a letter in L′ loses against a letter in L.
Lemma 3.6. A non-degenerating linear memory random walk admits a positive
path starting from any vertex.

Proof. By assumption (H1), coefficients of Mγ are non-decreasing. And according
to (H4), for all vertex v with (at least) two outgoing edges labeled by α and β, we
have

(Mα)β,α ≥ 1

B
.

In particular, to prove that (Mγ)α,β > 0, is it enough to show that β loses against
α in γ.

Let α ∈ A and v be a vertex of the graph. We show by induction that for all
n ≤ |A|, there exist distinct letters β1, β2, . . . , βn and a path γn starting at v such
that for all 1 ≤ i ≤ n, (Mγn)α,βi > 0. Assume it holds for some 1 ≤ n < |A|. For
L = {β1, . . . , βn} there exists, by the previous proposition, γ′ starting at v · γn such
that a letter βn+1 /∈ L loses against a letter in L. The matrixMγn·γ′ is then positive
at line α and columns β1, . . . , βn+1.

We obtain a positive path by composing these paths constructed for each letter
α ∈ A.
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3.2 Thermodynamic formalism

For the remainder of this text, we make several structural assumptions on the vec-
tor memory random walk that add up to Standing Assumptions 2.1 on its base graph.

Standing Assumptions 3.7.

• The vector memory random walk is linear and has a simplicial model.

• The random walk is quickly escaping.

• There exists a positive path γ∗ in the graph.

By Corollary 2.20 and Lemma 3.6, the last two assumptions are automatically sat-
isfied if the graph is non-degenerating.

Fix once and for all a positive path γ∗ in the graph. We then delve into the
dynamics of the associated first return map T∗ : ∆∗ → ∆∗ which is uniformly ex-
panding. The map T∗ has countably many inverse branches which we label by

S := {w path from γ∗ · v to v in G | wγ∗ contains γ∗ only once as a factor} .

For w ∈ S, let us define
∆w :=Mγ∗wγ∗∆γ∗·v.

It is the subsimplex of ∆∗ for which the coding in T starts with path γ∗wγ∗ and
goes back to ∆∗. The corresponding inverse branch sends ∆w ∩ ∆∗ to ∆∗ by the
matrix Mγ∗w. The sets ∆w ∩∆∗ form a partition of ∆∗.

Lemma 3.8. The map T∗ is conjugated on ∆∗ to the full shift on Σ = SN by a
homeomorphism.

Proof. Let us consider x ∈ ∆∗ and its corresponding infinite path γγγ in G starting at v
where γ∗ appears infinitely many times. One can decompose γγγ = γ∗w1γ

∗w2γ
∗w3 . . .

and associate to γγγ the infinite word on the alphabet S, w1w2w3 . . . . By construction,
the map T∗ acts as the full shift on that infinite word.

Conversely, let us assume that we are given an infinite word in S, w1w2w3 . . . .
Let the sequence (∆n)n≥0 be defined by

∆n =Mγ∗w1γ∗...γ∗wnγ∗∆v.

By definition ∆n is the set of points in ∆∗ which coding for T starts with γ∗w1γ
∗w2γ

∗ . . . wnγ
∗.

For every n ≥ 0,
∆n+1 =Mγ∗w1γ∗...γ∗wnγ∗Mwn+1γ∗∆v

and as γ∗ is a positive path Mwn+1γ∗∆v = Mwn+1Mγ∗∆v is compactly included in
∆v thus ∆n+1 is compactly included in ∆n. Hence the set

⋂∞
n=0 ∆n is non-empty,

included in ∆∗ and is reduced to a point again by positivity of Mγ∗ . This point
defines the inverse of the conjugacy map. Continuity of the map and its inverse are
obvious using the Hilbert metric.

To every cylinder of the shift w = [w1, . . . , wn] we associate the set of points
with the corresponding coding and the simplex ∆w :=Mγ∗w1γ∗...γ∗wnγ∗∆γ∗·v. The
cylinder w is then in bijection with the set ∆w ∩∆∗ with respect to the conjugacy.

On each vector space of the invariant family H, one can consider the Lebesgue
measure. We denote its restriction on ∆∗ by Leb, normalized such that Leb(∆γ∗) =
1.
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Remark 3.9. For win-lose induction, this measure corresponds to the measure on
∆∗ induced by transporting the probability measure Pv

q with q = (1, . . . , 1) (denoted
by 1) through the coding.

Definition 3.10. We denote by ν the measure Pv
1 pulled back by the coding to ∆∗.

The goal of this section is to use thermodynamic formalism with a geometric
potential measuring the Jacobian of T in order to understand ergodic properties of
the measure ν for a simplicial system. To do so, we need the following hypothesis
relating it with Lebesgue measure, similarly to the case of win-lose induction.

(LebH
∗ ) There exists C > 0 such that for all w ∈ S,

1

C
· Pv

1(γ
∗wγ∗) ≤ Leb(∆w) ≤ C · Pv

1(γ
∗wγ∗).

In some examples, such as for win-lose induction, the bounds are satisfied more
generally for every path γ ∈ Π(v). Notice that this property depends on the extra
structure given by the stable linear subspaces H since they are used to define the
Lebesgue measure.

3.2.1 Roof function

Let us consider the roof function defined for all x ∈ ∆∞(G) by

r(x) = − log

∣∣M−1
e x

∣∣
|x|

where e : v → v′ is the unique edge such that x ∈ {v} × Me∆v′ . And let the
accelerated roof function be defined, for x ∈ ∆∗, by

r∗(x) = r(x) + r(Tx) + · · ·+ r(Tn−1x) = − log

∣∣M−1
γ x

∣∣
|x|

where n ≥ 1 is the smallest integer such that Tnx ∈ ∆∗ and γ is the finite path
in the graph which is the coding of x until it returns to ∆∗. The path γ = γ∗γ′

is uniquely defined by the property that the coding of x starts with γ∗γ′γ∗ and γ∗

appears only once as a factor of γ′γ∗.
In the above formulas we make the abuse of using the same notation for x ∈

∆∞(G) and a representative of its class before projectivization. We can do so since
the formulas are invariant by multiplication of x by a scalar in R+.

Let 0 < θ∗ < 1 be the contracting constant associated to the matrix Mγ∗ as in
Proposition 3.4. We show that the accelerated roof function is locally (or weakly)
Hölder continuous with parameter θ∗.

Proposition 3.11. For all x, y ∈ ∆∗ in the same n-cylinder ∆w, where n ≥ 1,

|r∗(x)− r∗(y)| ≤ (θ∗)n−1 · diam(∆∗).

Proof. Let x, y ∈ ∆∗ be in the same cylinder ∆w where w = w1w2 . . . wn, then

|r∗(x)− r∗(y)| =

∣∣∣∣∣log
∣∣M−1

γ∗w1
y
∣∣∣∣M−1

γ∗w1
x
∣∣
∣∣∣∣∣ .

Notice that for any vector v, w ∈ RA
+ ,

|v|
|w| ≤

α(v, w)

β(v, w)
.
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Thus by definition of Hilbert norm

|r∗(x)− r∗(y)| ≤ d(M−1
γ∗w1

x, M−1
γ∗w1

y) = d(T∗x, T∗y). (11)

Let x′′ = Tn
∗ x and y′′ = Tn

∗ y in ∆∗, using Proposition 3.3,

d(T∗x, T∗y) = d(Mγ∗Mw2 . . .Mγ∗Mwnx
′′, Mγ∗Mw2 . . .Mγ∗Mwny

′′)

≤ θ∗ · d(Mw2Mγ∗Mw3 . . .Mγ∗Mwnx
′′, Mw2Mγ∗Mw3 . . .Mγ∗Mwny

′′)

≤ θ∗ · d(T 2
∗ x, T

2
∗ y) ≤ (θ∗)n−1 · d(x′′, y′′) ≤ (θ∗)n−1 · diam(∆∗).

In the following lemma we prove a key property on the roof function to apply
many theorems of thermodynamic formalism. The measure ν was introduced in
Definition 3.10.

Lemma 3.12. The accelerated roof function r∗ has exponential tail, i.e. there exists
σ > 0 such that ∫

∆∗
eσr∗dν <∞.

Proof. If x ∈ RA
+ , and γ is some path in the graph then

|Mγx| =
∑
i

∑
j

(Mγ)i,j · xj ≤

(
max

j

∑
i

(Mγ)i,j

)
· |x| = (max1 ·Mγ) · |x| .

Hence for x in the set {x ∈ ∆∗ | r∗(x) ≥ log τ} and γ the path corresponding to its
first return to ∆∗, applying the above inequality to M−1

γ x,

τ ·max1 ≤ |x|∣∣M−1
γ x

∣∣ ≤ max1 ·Mγ . (12)

The set is thus included in the subset of points in ∆∗ that satisfy the property
J τ ≤ Eγ∗ for initial distortion 1. By Corollary 2.10, there exists C, η > 0 such that,
for all τ > 1, ν ({x ∈ ∆∗ | r∗(x) ≥ log τ}) ≤ Cτ−η. Then for a fixed τ > 1, we split
the integral into domains indexed by n ∈ N, where log τn ≤ r∗(x) < log τn+1. For
all σ < η,∫

∆∗
eσr∗dν ≤

∞∑
n=0

(τn+1)σ · C · (τn)−η = C · τσ ·
∞∑

n=0

(τσ−η)n = C · τσ

1− τσ−η
<∞.

Definition 3.13. We denote by σ0 the supremum of σ for which there is finiteness.

As eσr∗ is positive and increasing in σ, the integral for σ = σ0 is infinite by
monotone convergence.

3.2.2 Estimates on the Jacobian

For A a m × m non-negative matrix of determinant ±1, we denote the induced
transformation on the positive cone by LA : PRm

+ → PRm
+ . If H is a linear subspace

of Rm such that the intersection of H and AH with RA
+ have non-empty interior we

denote by L H
A : P (H ∩ RA

+) → P (AH ∩ RA
+) the restriction of LA to these spaces.
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The map T∗ is locally of this form. We list here some useful properties on the Ja-
cobian determinant of such maps, denoted JA and JH

A respectively, and relate it to
the roof function.

By an elementary computation that can be found e.g. in [Vee78], Proposition
5.2, one has the following formulas.

Proposition 3.14. For all x ∈ PRm
+ ,

JA(x) =

(
|x|
|Ax|

)m

and for all linear subspace H ⊂ Rm,

JH
A (x) =

(
|x|
|Ax|

)dH

where dH is short for dimH.

Assume f is equal in the neighborhood of x to a projective linear map LA. We
use the following notations Df(x) := JA(x) and D

Hf(x) := JH
A (x).

In particular, for all x ∈ ∆∗,

DT∗(x) = e|A|·r∗(x) and DHT∗(x) = edH ·r∗(x).

Remark 3.15. In the following, for the sake of readability, we prove results in the
case H = R|A| but all the arguments are the same for other H where we replace |A|
by dH , DT∗ by DHT∗ and ∆w by ∆H

w .

Proposition 3.16. There exists a decreasing sequence Qn = 1+o(1) > 0, such that
for all n ∈ N, all finite word w = w1 · · · · · wn in S and all x ∈ ∆w

1

Qn
·DTn

∗ (x)−1 ≤ Leb(∆w) ≤ Qn ·DTn
∗ (x)−1.

In particular, there exists a constant Q > 0 such that for any two finite words w1

and w2,
1

Q
≤ Leb(∆w1w2)

Leb(∆w1) Leb(∆w2)
≤ Q.

Remark 3.17. This second inequality corresponds to the bounded distortion property
of [AF07] in the case of Rauzy–Veech induction.

Proof. Let x, y be both in ∆w and let Mw = Mγ∗w1γ∗...γ∗wn , then M
−1
w x,M−1

w y ∈
Mγ∗∆ and, as in (11), d(M−1

w x,M−1
w y) ≤ (θ∗)n−1 · diam(∆∗). This implies the

existence of Qn = 1 + o(1) > 0, depending only on diam(Mγ∗∆) and θ∗, such that

1

Qn
· J

M−1
w

(x) ≤ J
M−1

w
(y) ≤ Qn · J

M−1
w

(x). (13)

By integrating these inequalities for y in ∆w,

1

Qn
· J

M−1
w

(x) · Leb(∆w) ≤ Leb(Mγ∗∆) ≤ Qn · J
M−1

w
(x) · Leb(∆w).

Then for all w and all x ∈ ∆w

1

Qn
· Leb(∆w)−1 ≤ J

M−1
w

(x) ≤ Qn · Leb(∆w)−1. (14)
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The map Tn
∗ coincides with L

M−1
w

: ∆w →Mγ∗∆ on this domain, implying the first
inequality of the proposition.

Consider now inequalities (14) for the word w1 and integrate them for x in
∆w1w2 . We obtain in the middle part a change of variable formula for y = M−1

w1
x

which varies in the domain ∆w2 .

1

Q0
· Leb(∆w1)

−1 · Leb(∆w1w2) ≤ Leb(∆w2) ≤ Q0 · Leb(∆w1)
−1 · Leb(∆w1w2).

Corollary 3.18. There exists Q > 0 such that for all w ∈ S, corresponding to a
path of length n, every κ > 0 and any x ∈ ∆w

1

Q
· Leb(∆w)

κ/|A| ≤ e−κ(r∗(x)+···+r∗(T
n−1
∗ x)) ≤ Q · Leb(∆w)

κ/|A|.

With invariant subspaces

1

Q
· Leb (∆w)

κ/dH ≤ e−κ(r∗(x)+···+r∗(T
n−1
∗ x)) ≤ Q · Leb (∆w)

κ/dH .

We write A ≃ B when there exists a constant K such that 1/K ·B ≤ A ≤ K ·A
independently of the variables of A and B. Hypothesis (LebH

∗ ) can be stated as,
for all w ∈ S, Leb (∆w) ≃ Pv

1 (γ
∗wγ∗). Using the previous corollary, we have for all

x ∈ ∆w,

e|A|·r∗(x) ≃ 1

Pv
1 (γ

∗wγ∗)
.

Hence, the integral of this function on ∆∗ must be infinite. Which implies,

Proposition 3.19. Under hypothesis (LebH
∗ ), σ0 ≤ |A|.

3.2.3 Invariant measure equivalent to Lebesgue

Using such control on the Jacobian we prove the existence of a unique invariant
measure equivalent to Lebesgue for a quickly escaping simplicial system.

Proposition 3.20. If (LebH
∗ ) is satisfied, there exists a unique ergodic T∗-invariant

Borel probability measure µ absolutely continuous with respect to Lebesgue measure.
Moreover, the logarithm of its density | log dµ

dLeb
| is bounded by a global constant at

almost every point.

As T∗ is a first return map of T , if we have control on the Jacobian of T outside
of ∆∗ (as is the case for win-lose inductions), an ergodic measure for T∗ which is
absolutely continuous with respect to Lebesgue measure on ∆∗ induces an ergodic
measure with the same regularity for T on ∆. This measure can be either finite or
infinite on ∆, as is the case for Brun and Gauss maps respectively [Fou25b].

Proof. For all path γ = γ∗ · w1 · γ∗ · · · · · γ∗ · wn · γ∗ with w1, . . . , wn ∈ S,

Pv
1 (γ · • | γ) = Pv′

q

where q = 1 · γ ∈ RA
+ and v′ = γ · v. But the path γ∗ acts on distortion vectors by

a positive matrix which ratio of coefficients is bounded by a constant D depending
only on γ∗; thus q is D-balanced. We have

Leb(MγA)

Leb(∆H
γ )

≃ Leb(A).
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Moreover,

T−n
∗ A =

⋃
w1,...,wn∈S

MγA.

Thus

Leb(T−n
∗ A) ≃

∑
w1,...,wn∈S

Leb(A) · Leb(∆H
γ ) = Leb(A).

Hence the sequence of probability measures 1
n

∑n−1
i=0 (T

i
∗)∗ Leb is bounded and there

exists an extraction that converges to an invariant probability measure µ with
bounded log-density.

Ergodicity is a classical consequence of bounded distortion property of Proposi-
tion 3.16 and unicity follows directly . Let [w1] = [w1, . . . , wn] be a cylinder for the
shift on SN, we define the positive measure on cylinders

[w2] 7→ Leb(∆w1 ∩ T−n
∗ ∆w2)−

1

Q
· Leb(∆w1) · Leb(∆w2).

As the cylinders generate the Borel σ-algebra, for any T∗-invariant Borel set A, the
measure defined on cylinders by

[w1] 7→ Leb(∆w1 ∩A)− 1

Q
· Leb(∆w1) · Leb(A)

is positive. And so is

Leb
(
(SN \A) ∩A

)
− 1

Q
· Leb(SN \A) · Leb(A) ≥ 0

which implies that Leb(A) = 0 or Leb(SN \A) = 0.

3.2.4 Gibbs measures and Gurevic–Sarig pressure

We continue by investigating a wide class of invariant probability measures coming
from thermodynamic formalism. The following definitions are usually introduced in
a more general context where T∗ is a shift on the space of Markov chain Σ, instead
of a brave full shift on Σ = SN here.

Definition. Let µ be a T∗-invariant Borel probability measure, for any continuous
function ϕ : Σ → R, µ will be called a Gibbs measure for the potential ϕ if there
exist Q > 0 and P in R such that for every x in the cylinder [w1, . . . , wn]

1

Q
≤ µ ([w1, . . . , wn])

exp
(∑n−1

k=0 ϕ(T
k
∗ (x))− Pn

) ≤ Q. (15)

When ϕ is Hölder-continuous there exists a unique such measure and a unique such
P which is called the topological pressure of ϕ (see Theorem 3.1 in [Pes14]).

In the following, we consider the potential functions ϕκ = −κr∗ for κ ≥ 0.
When there is no ambiguity we will denote one of these functions simply by ϕ. We
demonstrate that they possess favorable properties for inducing the existence and
uniqueness of Gibbs measures.
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The Ruelle operator Lϕ : C(∆∗) → C(∆∗) associated to a potential function ϕ is
an operator acting on the space of continuous functions from ∆∗ to R. For a function
f ∈ C(∆∗) it is defined by

(Lϕf)(x) =
∑

T∗(y)=x

eϕ(y)f(y).

As explained in [Sar15]: ”the analysis of thermodynamic limits reduces to the study
of the asymptotic behavior of Ln

ϕf as n → ∞ for sufficiently many functions f
”. One of the key to understand this behavior is to first understand the limit of
1
n
logLn

ϕf . In particular, it can be compared to the following quantities.

For w ∈ S, let us define the sum on periodic points

Zn(ϕ,w) =
∑

Tn
∗ (x)=x, x0=w

eϕn(x)

with ϕn = ϕ+ ϕ ◦ T∗ + · · ·+ ϕ ◦ Tn−1
∗ . According to Theorem 4.3 in [Sar15], when

ϕ has summable variations, the limit

P (ϕ) := lim
n→∞

1

n
logZn(ϕ,w) (16)

exists for all w ∈ S and is independent of w. Moreover, if ∥Lϕ1∥∞ < ∞, then
P (ϕ) <∞.

Definition. P (ϕ) is called the Gurevic–Sarig pressure of ϕ.

This is a relevant quantity to consider according to Theorem 4.4 of [Sar15] since,
when P (ϕ) is finite, it is equal to the limit of 1

n
logLn

ϕf for a large class of functions.
It is not always the case for characteristic functions χ[w] for which we only have an
upper bound.

Remark 3.21. As a consequence of Sarig’s Generalized Ruelle–Perron–Frobenius
Theorem, in [Sar15], for all w ∈ S and x ∈ ∆∗

P (ϕ) ≥ lim sup
n→∞

1

n
log
(
Ln

ϕχ[w]

)
(x).

Definition. The potential function ϕ has summable variations if and only if

∞∑
n=2

varn(ϕ) <∞,

where varn(ϕ) = sup{|ϕ(x)− ϕ(y)| : xi = yi, i = 1, . . . , n}.
Notice that the Hölder property proved in Proposition 3.11 implies that, for all

κ, ϕ has summable variations and var1(ϕ) <∞.

These definitions enable us to state the key theorem of this section. It gives
a criterion for uniqueness of a Gibbs measure for a given potential function. The
following formulation of Sarig theorem is taken from Theorem 4.6 in [Pes14]. The
BIP property for Markov chains it mentions is clearly satisfied in our case since
we are considering a full shift. Existence is due to Sarig [Sar03] and uniqueness
to Buzzi–Sarig [BS03]. Finiteness of entropy is a consequence of Theorem 5.5 in
[Sar15].
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Theorem. Assume that the potential ϕ has summable variations. The potential ϕ
admits a unique Gibbs measure µϕ if and only if the Gurevic–Sarig pressure and
var1(ϕ) are finite.

In this case, topological and Gurevic–Sarig pressures coincide, ϕ is positive re-
current and the Gibbs measure is the Ruelle–Perron–Frobenius measure of ϕ. This
measure is the unique equilibrium measure and it has finite entropy.

In our setting, it implies this simpler statement.

Corollary 3.22. When P (ϕ) < ∞ there exists a unique Gibbs measure µϕ of po-
tential ϕ. It is the unique equilibrium measure for ϕ and has finite entropy.

We study finiteness of the pressure by relating it to exponential tail integrals.
Let Iσ stand for

∫
∆∗ e

σr∗dν. We have seen that Iσ <∞ if and only if σ < σ0.

Proposition 3.23. Under assumption (LebH
∗ ), there exists a constant K such that

for all σ < σ0

1

K
· Iσ ≤

∑
w∈S

e−(|A|−σ)·r∗(w) ≤ K · Iσ

and for σ ≥ σ0, ∑
w∈S

e−(|A|−σ)·r∗(w) = +∞.

In the formulas, r∗(w) stands for r∗(x) at some point in x ∈ w. The proposition
does not depend on these choices according to Proposition 3.11.

Proof. As before, we write A ≃ B when there exists a constantK such that 1/K·B ≤
A ≤ K · A for all σ and choices of x ∈ w. Corollary 3.18, assumption (LebH

∗ ) and
Proposition 3.11 show respectively that, for all w ∈ S,

e−(|A|−σ)·r∗(w) ≃ Leb(∆w) · eσ·r∗(w) ≃ Pv
1(γ

∗wγ∗) · eσ·r∗(w) ≃
∫
∆w

eσr∗dν

We end the proof by summing over S.

This link enables us to characterize the values of κ for which the pressure is finite.

Lemma 3.24. If a linear random walk satisfies (LebH
∗ ) then its pressure P (ϕκ) is

finite if and only if κ > |A| − σ0.

Proof. By Formula (13), Lϕ1 =
∑

T∗(y)=x e
ϕκ(y) ≤ (Q′)κ/|A| ·

∑
w∈S e

−κr∗(w).Which

is finite for |A|−κ < σ0. And as mentioned above, finiteness of P (ϕκ) is implied by
finiteness of Lϕ1.

Assume now that the pressure if finite. Then according to Remark 3.21, we have
lim supn→∞

1
n
log
(
Ln

ϕχ[w]

)
(x) < +∞. But then

Ln
ϕχ[w](x) =

∑
Tn
∗ (y)=x

e−κ·r∗(n)(y)χ[w](y)

≥ (Q′)−n·κ/|A|
∑

w1,...,wn−1∈S

e−κ·r∗(w)e−κ·r∗(w1) . . . e−κ·r∗(wn−1)

= (Q′)−n·κ/|A| · e−κ·r∗(w) ·

(∑
w1∈S

e−κ·r∗(w1)

)n

Hence
∑

w1∈S e
κ·r∗(w1) must be finite and |A| − κ < σ0.
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The proposition has also the following important consequence.

Proposition 3.25. Under assumption (LebH
∗ ), P (ϕκ) −−−−−→

κ→+∞
−∞.

Proof. Let us take κ = |A| −
(
σ − κ1

m

)
, where σ < σ0 and m is a lower bound for

r∗, then

Zn(ϕ,w) =
∑

Tn
∗ (x)=x, x0=w

eϕn(x) ≤ Q′ ·
∑

w1,...,wn∈S

e−κ(r∗(w1)+···+r∗(wn))

≤ Q′ ·
(
K · Iσ−κ1

m

)n
≤ Q′ · (K · Iσ)n · e−nκ1 .

Thus lim 1
n
logZn(ϕ, n) ≤ log(K · Iσ) − κ1 and letting κ1 go to infinity we obtain

the result.

On the other hand, by (12), the roof function is bounded away from zero, hence,

Proposition 3.26. P (ϕκ) −−−−−→
κ→−∞

+∞.

3.3 Suspension flow

Let us define the suspension space by ∆∗
r := (∆∗×R)/ ∼ where for all (x, t) ∈ ∆∗×R

we have (x, t) ∼
(
T̂∗x, t+ r∗(x)

)
. The associated suspension semi-flow is defined

on ∆∗
r, for all t ≥ 0, by

Φ∗
t : (x, s) → (x, s+ t).

Notice that this semi-flow is defined such that the first return map to the section
∆∗ × {0} is T∗ and its return time is r∗.

To have a flow, one need to define an invertible extension of our map. Let us
denote by ∆̂∗ the set of bi-infinite words in S. The shift on this space is denoted by
T̂∗ and is semi-conjugated to T∗. It is invertible and is called the natural extension
of T∗.

On can now define similarly the suspension space ∆̂∗
r . And its associated sus-

pension flow on ∆̂∗
r denoted again by Φ∗

t .

Metrics Let us define for x, y ∈ SN the metric

δ(x, y) = (θ∗)ℓ(x,y)

where ℓ = min{k ≥ 0 | xk ̸= yk} and θ∗ is taken from Proposition 3.4, such that
the Hilbert metric of the corresponding points of the simplex in ∆∗ with the given
coding for T∗ satisfy d(x, y) ≤ diam(∆∗) · δ(x, y). Where the diameter is taken for
distance d. In particular, Hölder functions for d are also Hölder for δ.

This metric can be extended to ∆̂∗ := SZ by considering

ℓ = min{k ≥ 0 | x−k . . . xk ̸= y−k . . . yk}.

On ∆̂∗
r , we consider the product metric induced by δ and the euclidean metric in

fibers.
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Measures Denote by MT∗,r∗ the set of T∗-invariant Borel probability measures
with µ(r∗) :=

∫
∆∗ r∗dµ < +∞. Notice that to each T∗-invariant measure µ, one can

associate a unique T̂∗-invariant measure which extends it.
Every Φ∗-invariant Borel probability measure µ̃ on ∆̂∗

r can be decomposed as a
product of a measure µ ∈ MT∗,r∗ (extended to ∆̂∗) and the Lebesgue measure on
fibers. Namely,

µ̃r∗ = (µ(r∗))
−1 (µ× Leb)|∆̂∗

r
.

The Kolmogorov–Sinai entropy of the flow for this measure is written h(Φ∗, µ̃)
and satisfies Abramov’s formula

h(Φ∗, µ̃) =
h(T∗, µ)

µ(r∗)

where h(T∗, µ) is the Kolmogorov–Sinai entropy for T∗. In this setting, the topolog-
ical entropy can be defined as

htop(Φ
∗) = sup

µ∈MT∗,r∗

h(Φ∗, µ̃r∗).

An induced measure µ̃r∗ for µ ∈ MT∗,r∗ at which this supremum is achieved (and
by extension µ itself) is referred to as a measure of maximal entropy.

By our Standing Assumptions 2.1 and 3.7, the coding map in Proposition 1.1
is injective on ∆∞(G) and conjugates the map T up to zero measure subsets to a
subshift on a subset of paths in G . We define the natural extension of T as the
subshift on bi-infinite paths in G and a suspension flow Φ with the map r.

Proposition 3.27. The flows Φ∗ and Φ are conjugated and their exponential tail
integrals are equal.

This is a fundamental remark, as it demonstrates that the flow Φ∗ does not de-
pend on the choice of γ∗. While we initially focus on studying Φ∗ due to the favorable
dynamical properties of T∗, the ultimate goal is to analyze Φ. This suspension is
thus referred to as the canonical suspension of ∆∞(G).

Proposition 3.28. Under assumption (LebH
∗ ), the pressure P (ϕκ) vanishes at a

unique value κ0 > |A| − σ0. The measure induced by µϕ is the unique measure of
maximal entropy for the canonical suspension flow, with entropy equal to κ0.

Notice, in particular, that this provides an intrinsic definition of κ0 as the topo-
logical entropy of the suspension flow does not depend on the choice of γ∗.

Proof. The map κ 7→ P (ϕκ) is a convex, decreasing function of κ (see Theorem
4.6 of [Sar15]). Utilizing Lemma 3.24, Proposition 3.25, and Proposition 3.26, we
establish the first fact by continuity of this function.

According to Corollary 3.22, there exists a Gibbs measure µ of finite entropy
for this vanishing value of κ. This measure is an equilibrium measure and satisfies
the variational principle for the topological pressure (see Section 5.3 in [Sar15]).
Consequently, µ maximizes the quantity

h(T∗, µ)−
∫
∆∞(G)

κ0r∗dµ, (17)

over all Borel measures such that µ(ϕ) > −∞ (i.e., µ(r∗) < +∞). Its maximum value

is equal to the pressure, here 0. This also implies that h(Φ∗, µ̃) = h(T∗,µ)
µ(r∗)

= κ0 is

maximal. According to Theorem 1.1 in [BS03], there is at most one such maximizing
measure.
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3.3.1 Exponential mixing and Central limit theorem

Consider an observable ϕ : ∆∗ → R, let us show that it has exponential decay
of correlation with any other observable. Classically, this can be reformulated as
showing exponential decay of the following norm.

∥E(ϕ|Fn)∥2 := sup

{∫
ξϕdµ | ξ ∈ L2(Fn) and ∥ξ∥2 = 1

}
.

Where Fn = r∗
−n(B) is the preimage of the Borel σ-algebra.

Define ϕ to be weakly r∗, α-Hölder on ∆∗ if there is a constant C such that for
all x, x′ ∈ SN with x0 = x′0 we have

|ϕ(x)− ϕ(x′)| ≤ C · sup
∆x0

r∗ · δ(x, x′)α.

Let us denote by Cα(ϕ) the smallest such constant for a r∗, α-Hölder fonction. We
denote this set of functions by Hα(∆∗). As we have seen, the metric δ can be

extended to ∆̂∗ and we denote by Hα(∆̂∗) the set of weakly r∗, α-Hölder function
on this set.

Proposition 3.29. If ϕ ∈ Hα(∆∗) ∩ Lp(∆∗) of ϕ ∈ Hα(∆̂∗) ∩ Lp(∆̂∗) for some
p > 1 then there exists C, σ > 0 such that for all n ≥ 0

∥E(ϕ|Fn)− E(ϕ)∥2 ≤ C · (Cα(ϕ) + ∥ϕ∥p) · e−σn.

Proof. Let ∆k = {x ∈ ∆∗ | r∗(x) ≤ k} and consider the decomposition ϕ = ϕ1 +
ϕ2 + ϕ3 defined by

ϕ1 =
∑

w∈Sn

ϕ(xw)χ∆wχ∆k , ϕ2 = ϕχ∆k − ϕ1 and ϕ3 = ϕ · (1− χ∆k ).

Where xw is an arbitrary element of ∆w. Notice that ϕ1 is independent of Fn, thus

E(ϕ1|Fn) = E(ϕ1).

By Proposition 3.11, there exists a constant C1 such that for all x ∈ ∆w,

|ϕ2(x)| = |ϕ(x)− ϕ(xw)|
≤ Cα(ϕ) · k · δ (x, xw)α

≤ Cα(ϕ) · C1 · k · (θ∗)αn

By Hölder inequality, we have for all p ∈ (1,∞],

∥ϕ3∥2 = E(|ϕ · (1− χ∆k )|
2) ≤ ∥ϕ∥p · E(|1− χ∆k |)

and P(r∗(x) ≥ k) ≤ Iσ · e−σk. Thus there exists C2 such that

∥ϕ3∥2 ≤ C2 · ∥ϕ∥p · e−σk.

The same argument also holds for ∥ϕ3∥1. Hence, applying these remarks, there
exists σ > 0 such that for all k and n we have

∥E(ϕ|Fn)− E(ϕ)∥2 ≤ |E(ϕ)− E(ϕ1)|+ ∥E(ϕ2|Fn)∥2 + ∥E(ϕ3|Fn)∥2
≤ ∥ϕ2∥1 + ∥ϕ3∥1 + ∥ϕ2∥2 + ∥ϕ3∥2
≤ 2C1 · Cα(ϕ) · k · e−σn + 2C2 · e−σk

We conclude by taking k = n and σ a bit smaller to get rid of the linear factor.
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This implies exponential decay of correlation.

Corollary 3.30. Let p > 1 then, for any α > 0, there exists positive constants C, δ
such that for any ϕ ∈ Hα(∆∗) ∩ Lp(∆∗, µ) and ψ ∈ L2(∆∗, µ) we have∣∣∣∣∫ ϕ · ψ ◦ Tn

∗ dµ−
∫
ϕdµ

∫
ψ dµ

∣∣∣∣ ≤ C ·
(
Cα(ϕ) + ∥ϕ∥p

)
· ∥ψ∥2.

If p > 2 and both ϕ, ψ ∈ Hα(∆̂∗) ∩ Lp(∆̂∗, µ) then∣∣∣∣∫ ϕ · ψ ◦ T̂n
∗ dµ−

∫
ϕdµ

∫
ψ dµ

∣∣∣∣ ≤ C ·
(
Cα(ϕ) + ∥ϕ∥p

)
·
(
Cα(ψ) + ∥ψ∥p

)
.

Another consequence is that for such ϕ, if
∫
ϕdµ = 0, then

∑∞
n=1 ∥E(ϕ|Fn)∥2 <

∞.Which classically (see Theorem 2.11 in [Via97]) implies a Central Limit Theorem
(CLT).

Corollary 3.31. Let ϕ ∈ Hα(∆∗) ∩ Lp(∆∗, µ) with
∫
ϕdµ = 0. Assume that there

does not exist ψ ∈ L2(∆∗, µ) such that ϕ = ψ ◦ T∗ − ψ. Then there exists σϕ > 0
such that

1√
N

N−1∑
n=0

ϕ ◦ Tn
∗

d−→ N (0, σϕ) as N → ∞.

Where the convergence is in distribution to a normal law of variance σϕ.

The same result holds on ∆̂∗ with p > 2.

One can then go from central limit theorem on T∗ to the canonical suspension,
by applying the main theorem in [MT04]. To apply this theorem, we need to check
the criterion in the CLT for the roof function. First, notice that by exponential tail
property, r∗ ∈ Lp(∆∗) for any p > 0. Moreover, we show in the following lemma
that it is not a coboundary.

Lemma 3.32. If the graph contains two positive loops, such that the invariant
direction of their associated matrix are not projectively equal, then it is not possible
to write r∗ = ψ + ϕ ◦ T∗ − ϕ where ψ is constant on each tile ∆w of ∆∗ with w ∈ S
and ϕ in L2.

Proof. Assume we have such an expression of r∗. Consider an element of ∆∗ repre-
sented by vectors such that |x| = 1. Differentiating (in the sense of distributions)
r∗

(n)(x) = r∗ ◦ Tn−1(x) + · · ·+ r∗(x) we have D(r∗
(n)) = D(ϕ ◦ Tn

∗ )−D(ϕ) and for
hn an inverse branch of Tn

∗ , D(r∗
(n) ◦ hn) = D(ϕ) − D(ϕ ◦ hn). Now notice that

we can rewrite r∗(x) = − log |M−1x| and r∗(n) ◦ hn(x) = log |Mnx| where M is the
non-negative matrix associated to the path of the tile in which x is taken and Mn

the matrix associated to the inverse branch. Thus for v ∈ RA,

Dr∗(x) · v =
|Mnv|
|Mnx|

.

Notice that D(ϕ ◦ hn) → 0 thus for all v, w ∈ ∆∗,

|Mnv|
|Mnw|

=
⟨(1, . . . , 1)Mn, v⟩
⟨(1, . . . , 1)Mn, w⟩

admits a limits independent of the choice of inverse branch. In particular, this
implies that (1, . . . , 1)Mn converges projectively to a limit independent of the path.
This contradicts the hypothesis on the two loops.
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This implies that r∗−r∗ satisfies the above CLT and thus the following theorem.
Let us denote by Hα(∆̂∗

r) the space of Hölder functions for the induced product

metric on ∆̂∗
r .

We have the following dictionary between weakly r, α-Hölder functions on the
spaces ∆̂∗ and α-Hölder functions on its suspension space ∆̂∗

r . Its proof is straight
forward and left to the reader.

Proposition 3.33. Consider φ ∈ Hα(∆̂
∗
r) and ϕ : ∆∗ → R defined for x ∈ ∆∗ by

ϕ(x) =

∫ r∗(x)

0

φ (Φt(x)) dt.

Then ϕ is a weak r∗, α-Hölder function on ∆∗ and for p > 2, if φ ∈ Lp(∆̂∗
r , µr) then

ϕ ∈ Lp(∆̂∗, µ). Moreover, if there exists ψ ∈ L2(∆̂∗, µ) such that ϕ = ψ◦T∗−ψ then

there exists ψ̃ ∈ L2(∆̂∗
r , µr) differentiable in the direction of the suspension such that

φ = Xtψ̃, where Xt is the derivative in that direction.

This enables us to state a CLT on the canonical suspension flow. For convenience
in the notation, we consider the suspension of ∆̂∗ but recall that this suspension is
intrinsic to the simplicial model by Proposition 3.27.

Theorem 3.34 (Central Limit Theorem). Let p > 2 and let φ ∈ Hα(∆̂∗
r) ∩

Lp(∆̂∗
r , µr) satisfy

∫
φdµr = 0. Assume that there does not exist ψ̃ ∈ L2(∆̂∗

r , µr)

differentiable in the direction of the suspension such that φ = Xtψ̃ where Xt is the
Lie derivative in that direction. Then there is a positive constant σϕ such that

1√
|T |

∫ T

0

φ ◦ Φt dt
d−→ N (0, σϕ) as |T | → ∞.

3.4 Bound on Hausdorff dimension

We consider the Gibbs equilibrium measure µ — i.e. maximizing quantity (17) —
associated to κ0. According to Formula (15) in the definition of Gibbs measures,
there exists Q > 0 such that, for all x in the cylinder w = [w1, . . . , wn],

1

Q
· exp

(
−

m−1∑
k=0

κ0 · r∗(T k
∗ (x))

)
≤ µ(w) ≤ Q · exp

(
−

m−1∑
k=0

κ0 · r∗(T k
∗ (x))

)
.

Remark 3.35. As we did in a previous subsection, we describe the case of H = R|A|

but all the arguments are the same for other H where we replace |A| by dH , DT∗ by
DHT∗ and ∆w by ∆H

w .

Corollary 3.18 implies that,

exp

(
−|A|

m−1∑
k=0

r∗(T
k
∗ (x))

)
≃ Leb(∆w).

Thus, for all cylinders w,

µ(w) ≃ Leb(∆w)κ0/|A|. (18)

Proposition 3.36. There exists K > 0 such that for all simplex ∆ of dimension d,
measure m and diameter less than 1, the minimal number of balls of radius 0 < ρ ≤
m required to cover ∆ satisfies

Nρ ≤ K · m
ρd
.

For m = ρ this implies in particular Nρ ≤ K · ρ1−d.
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Since T∗ is uniformly expanding, for all ϵ > 0, there exists F a family of cylinders
that form a partition of the space of ∆∗ and such that Leb(∆w) < ϵ. Then, for all
w ∈ F one can find a covering {Bw

i } by less than K · Leb (∆w)1−d balls of radius
Leb (∆w) < ϵ. For this covering, we then have∑

w∈F

∑
i

(diamBw
i )δ ≤

∑
w∈F

K · Leb (∆w)1−d · Leb (∆w)δ .

By Formula (18),

∑
w∈F

Leb (∆w)κ0/|A| ≃
∑
w∈F

µ (w) = µ

( ⋃
w∈F

w

)
= 1.

Thus if 1− d+ δ ≥ κ0/|A| then
∑

w

∑
i(diamBw

i )δ is bounded uniformly for all ϵ.
Then

dimH ∆∗ ≤ d− 1 + κ0/|A|. (19)

To induce an inequality on the whole space ∆∞(G), we need to control the
Haussdorff dimension of the set of parameters which coding starts with γ∗ but for
which this path never appears again.

Proposition 3.37. Let ∆∞ := ∆γ∗ ∩∆∞(G). Under assumption (LebH
∗ ),

dimH ∆∞ \∆∗ ≤ |A| − 1− σ0

|A| .

Proof. By assumption (H2), the sum of r along an orbit by T of a point in ∆∞

goes to infinity. Thus, for any x0 ∈ ∆∞ and all ϵ > 0, there exists a finite path
starting at γ∗ · v such that x0 ∈ ∆γ∗·γ , Leb (∆γ∗·γ) ≤ ϵ and for all x ∈ ∆γ∗·γ we
have J

M−1
γ∗·γ

(x) > 1/ϵ.

This implies the existence of a countable covering of the simplex by such sets.
Moreover, if two simplices ∆γ∗·γ and ∆γ∗·γ′ overlap, it means one of the path is
prefix from the other. Thus, this covering can be assumed to be a partition. Denote
by Γ the corresponding set of paths γ labeling the partition.

For all γ ∈ Γ, there exists a covering {Bγ
i } of ∆γ∗·γ by less thanK·Leb (∆γ∗·γ)

1−d

balls of radius Leb (∆γ∗·γ). And∑
γ∈Γ

∑
i

(diamBγ
i )

δ ≤
∑
γ∈Γ

K · Leb (∆γ∗·γ)
1−d · Leb (∆γ∗·γ)

δ ≤ C ·K · ϵδ−d ·
∑
γ∈Γ

Pv
1(γ

∗ · γ).

The condition on the Jacobian for simplices of the cover implies that for all x ∈
∆γ∗·γ∩∆∗, e|A|·r∗(x) > 1/ϵ. Hence

∑
γ∈Γ Pv

1(γ
∗ ·γ) ≤ ν

(
e|A|·r∗(x) > 1/ϵ

)
. Moreover

for σ < σ0 the tail integral Iσ is finite and ν
(
e|A|·r∗(x) > 1/ϵ

)
< Iσ · ϵ−

σ
|A| . Thus,

we have the bound ∑
γ∈Γ

∑
i

(diamBγ
i )

δ ≤ C ·K · Iσ · ϵd−δ− σ
|A| .

which is bounded by a constant independent of ϵ for δ ≤ d− σ
|A| . Hence dimH ∆∞ \∆∗ ≤

d− σ
|A| for all σ < σ0 and thus dimH ∆∞ \∆∗ ≤ d− σ0

|A| .

Recall that T is locally projective linear and its Jacobian is bounded away from 0
and ∞; thus the image sets Tn∆∗ have the same Hausdorff dimension. In particular,
∆∗(G) which is a countable union of such sets has the same Hausdorff dimension.
And the same occurs for ∆∞(G) and ∆∞(G) \∆∗(G). Equation (19) and Proposi-
tion 3.37 thus imply the following.
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Theorem 3.38. Under assumption (LebH
∗ ), the Hausdorff dimension of ∆∞(G) is

bounded by

dimH ∆∞(G) ≤ |A| − 1− |A| − κ0

|A| .

If the simplices are included in a family of invariant subspace H,

dimH ∆∞(G) ≤ dH − 1− dH − κ0

dH
.

Hausdorff dimension for subgraphs Consider a linear memory random walk
on a graph G with a simplicial model and F a subgraph of G. In this paragraph,
standing assumptions will only be made on the linear memory random walk on F
induced by G.

Standing Assumptions 3.39.

• F is finite and strongly connected.

• The action of paths on distortion vectors satisfies hypothesis (H1-4) and (LebH
∗ ).

• F is non-degenerating or admits a non-degenerating factorization as defined
respectively in Definition 2.22 and Definition 2.28.

By Lemma 3.6, there is a positive path γ∗ in F which enables us to define the
first return map T∗.

The simplicial model on G induces a simplicial model on F . We denote by
∆∞(F,G) and ∆∗(F,G) its associated parameter sets, defined in the introduction of
the section, to keep track of the fact that the simplicial model is induced by the one
on G.

Corollary 3.40. If there exists a vertex v in F which has an outgoing edge in G
and not in F , then

dimH ∆∞(F,G) < dH − 1.

Proof. We start by proving that the Lebesgue measure of ∆∗(F,G) is zero. As in the
proof of Proposition 3.20, after γ∗ the distortion is balanced, thus the probability
that a path leaves F is bounded from below by some ϵ > 0 depending only on γ∗.
And the probability that γ∗ appears n times in a path before leaving F is bounded
from above by (1− ϵ)n. By (LebH

∗ ) we then have∑
w∈Sn

Leb(∆w) ≤ (1− ϵ)n.

Which proves that

Leb(∆∗(F,G)) ≤
∑

w∈Sn

Leb(∆w) −−−−→
n→∞

0.

Now, let P = P (ϕdH ) and µ be the Gibbs measure for this potential. Then for
all n-cylinder w, we have

µ(w) ≃ Leb(∆w) · e−Pn

up to a constant independent of n. Since, for all n ≥ 1,
∑

w∈Sn µ(w) = 1, P must
by negative. As the pressure is decreasing in κ, the vanishing value for κ satisfies
κ0 < dH . Theorem 3.38 then implies dimH ∆∞(F,G) < dH − 1.
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3.5 Consequences on win-lose inductions

Win-lose inductions satisfy (LebH
∗ ) due to the following stronger property:

(LebH) For all vertices v and all paths γ starting at v,

Leb(∆H
γ )

Leb(∆H)
= Pv

1(γ).

This assumption generalizes the case of win-lose induction considered in Sec-
tion 1.1 and is false in general for fractal sets constructed as parameters remaining
in a subgraph, such as the Rauzy gasket.

Proposition 3.41. If (LebH) is satified, the zero pressure parameter is κ0 = dH .

Proof. We show that the measure µ from Proposition 3.20 is the unique Gibbs
measure for potential −dH · r∗.

According to Corollary 3.18, there exists a constant Q > 0 such that, for all x in
the cylinder [x1, . . . , xn],

1

Q
≤ Leb([x1, . . . , xn])

exp
(∑n−1

k=0 −dH · r∗
(
T k
∗ (x)

)) ≤ Q.

As µ is such that | log dµ
dLeb

| is bounded at almost every point then it satisfies the
same property for another constant Q. Then µ is a Gibbs measure for the potential
−dH · r and it has zero topological pressure. By Proposition 3.28, the function
P (−κ · r∗) vanishes at a unique value κ0 which is then equal to dH .

We summarize these results in the following theorem. Recall this is under Stand-
ing Assumptions 2.1 and 3.7.

Theorem 3.42. Under assumption (LebH), the canonical suspension flow has a
unique measure of maximal entropy which is the suspension of the unique T -invariant
Borel measure absolutely continuous with respect to Lebesgue measure. Moreover, the
entropy for this measure is dH .

In particular, the only thing one needs to check on win-lose induction for the
conclusion of this theorem to be true, is the graph criterion defined as the non-
degenerating property.

Remark 3.43. Notice that the measure suspension of the unique T -invariant mea-
sure absolutely continuous with respect to Lebesgue measure is finite. It is a con-
sequence of the exponential tail property. For Rauzy–Veech induction, this measure
corresponds to Masur–Veech measure (see [Fou25a] for details). This was one of the
first key results of the theory of translation surfaces proved by Masur and Veech in-
dependently in 1982. The computation of these volumes has been an active research
subject ever since and has seen major advances recently.

Measure of maximal entropy as a limit According to Proposition 3.16,
there exists a sequence Qn = 1 + o(1) > 0 such that

1

Qn
· Leb([x1, . . . , xn]) ≤ exp

(
n−1∑
k=0

−dH · r∗
(
T k
∗ (x)

))
≤ Qn · Leb([x1, . . . , xn]).
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Where x is chosen as the unique point of n-periodic coding starting with x1, . . . , xn.
Summing on all cylinders, we get

1

Qn
≤

∑
Tn
∗ (x)=x

exp

(
n−1∑
k=0

−dH · r∗
(
T k
∗ (x)

))
≤ Qn.

Then when n → 1, it goes to 1 and there is no mass going to infinity for the
Gibbs measure. Theorem 7.8 in [GS98] then implies the following.

Corollary 3.44. If δx denotes the Dirac measure supported on x and µ the ergodic
measure equivalent to Lebesgue on ∆∞(G),

µ = lim
n→∞

1

Pn

∑
x∈Fix(Tn

∗ )

e−dH ·r∗(n)(x) δx

where r∗
(n) = r∗ + r∗ ◦ T∗ + · · ·+ r∗ ◦ Tn−1

∗ and Pn =
∑

x∈Fix(Tn
∗ ) e

−dH ·r∗(n)(x).

Strongly positive recurrence By the same argument, we have 1
Qn

Leb([w]) ≤
Zn(ϕ,w) ≤ Qn Leb([w]). And thus,

∑
n≥0 Zn(ϕ,w) diverges. By Theorem 6.10 in

[Sar15], this implies that the discriminant is infinite thus by Theorem 6.7 in the
same article, the following holds.

Proposition 3.45. The potential ϕ = −dH · r∗ is positive recurrent with spectral
gap property.

The Spectal Gap Property and its implications are defined in section 6 of that
article. They imply in particular an exponential mixing and Central Limit Theorem
for the shift (which are weaker in this setting than the one proved in Section 3.3.1.

Theorem 6.5 in [Sar15] establishes that the perturbed pressure is analytic in a
neighbourhood of zero is the key ingredient for equidistribution theorem in [PP90].
All their construction using dynamical zeta function should work the same using
this result. It will be done in details in an upcoming article. Up to checking this
construction, this would imply the following conjectural result (as well as other finer
counting estimates).

Conjecture. For γ a periodic orbit of the suspension flow on ∆̂∗
r , we denote by

δγ the Dirac measure supported on it with total mass ℓ(γ) its length. Let µr be the
unique measure of maximal entropy for the flow, then

h

ehL
·
∑

ℓ(γ)≤L

δγ −→ µr

where the convergence is for weak topology as L goes to infinity. Moreover, if N(L)
denotes the number of closed orbit of the flow of length less than L,

N(L) ∼ ehL

hL
.

Notice that the last part of the result was proved in the case of strata of quadratic
differentials [EMR19].
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