Ergodic properties of Rauzy—Veech inductions

Charles Fougeron

Abstract

We introduce a unified description of Rauzy—Veech induction on interval ex-
changes and linear involutions with or without flips using simplicial systems. This
enables us to give a new straightforward and common proof of the existence and
uniqueness of the measure of maximal entropy for Teichmiiller flow on abelian and
quadratic differentials strata. In both cases it corresponds to the classical Masur—
Veech measure.

For interval exchanges and linear involutions with flips we obtain the existence of
a periodic subinterval for almost every parameters as well as an upper bound on the
Hausdorff dimension of the complementary set of such parameters. This strengthens
the results of Nogueira Danthony—Nogueira and Skripchenko—Troubetzkoy.

Contents
1 Definitions 1
1.1 Win-lose induction . . . . . .. ... ... ... ... . ... ... 1
1.2 Non-degenerating properties . . . . . . . . . . ... ... ... .. 5
1.2.1 Classical Rauzy diagrams . . . . . ... ... ... ...... 5
1.2.2 Non-degenerating subgraphs. . . . . . . . ... ... ... .. 5
1.3 Central Limit Theorem . . . .. .. .. .. ... ... ........ 7
2 Rauzy—Veech inductions 7
2.1 Definitions . . . . . . . . .. 7
2.2 Win-lose induction . . . . . ... .. ... o 10
2.3 Consequences for IET and LI with flips . . . ... ... .. ..... 13
3 Natural extensions 13
3.1 Zippered rectangles . . . . . . ... L Lo 13
3.2 Teichmiiller flow . . . .. . . .. ... .. .. .. .. ... . ... .. 21

1 Definitions

1.1 Win-lose induction

Let G = (V, E) denote a graph labeled on an alphabet A by a function | : E — A
such that all vertex v € V has either zero or two outgoing edges with distinct labels..
Moreover, for every v € V, the restriction of [ to E,, the set of edges going out of v,
is assumed to be injective.



Let VO be the set of vertices in V with no outgoing edges. A vertex v in V \ V°
has by assumption two outgoing edges e, f respectively labeled by o, 3 € A. The
subcones

K@::{AeRﬁ\Aa<AB} and ICf::{)\eRf|)\g<)\a}

form a partition of R{' where Ry = {z € R | > 0}. They have the same boundary
set thus depending only on the vertex v

HY ::{AeRﬂAa:Aa}
Additionally, we associate matrices
M, :=1d +Ego and M;:=1d +FEq.zs.

Where F,  is the elementary matrix with coefficient 1 at row a and column b. Such
that K¢ = M, - R{ and K/ = My - R{". Hence it is natural to define

6. - K¢ — RP
LA = MM

The win-lose induction associated to the graph G is the map
0: (VA\V?) xR} -V xRY

defined for every edge e from vertices v to v’ and all A € K¢ by O (v, \) = (v, ©()N)) .

Remark 1.1. The map is only defined on

L] ({v} x R4\ ’H)

veV\VO

but we make this abuse of notation for clarity, since these hyperplanes will not play
a role in the Lebesgue generic dynamical behaviour nor the Hausdorff dimensions we
will estimate.

Consider a vertex v with two or more outgoing edges and a parameter A\ € ]Rf.
In analogy with Rauzy—Veech induction (for an introduction, refer to [Yocl0]), we
call the edge e such that A € K¢ the loser. Conversely, the labels of any other edge
e’ in E, is called a winner, and we say it wins against e. We sometimes say a label
wins or loses when there is no ambiguity to which edge they correspond.

The map © can be characterized as follows: it compares the coordinates of all
edges emanating from a given vertex v on the vector and subtracts the smallest
coordinate from the others, effectively subtracting the losing coordinate from the
winning ones.

Remark 1.2. In the following, we denote an edge by its label when there is no
ambiguity. Using for instance K% instead of K°.

Let us consider the projectivization relation x ~ Az satisfied for all A € Ry and
z € RY. We denote by A := R%/ ~ the simplex of dimension |A| — 1 and, for
each v € V, by {Ac}ecr, its induced partition by {K°}, .5 . The maps ©. can
be quotiented by this relation and we denote the induced map by Tc : A — A.
Similarly, © induces a map on space A(G) := V x A denoted by T : A(G) — A(G).



b .
Figure 1: Action of T, on A,

Remark 1.3. Classically (see [Yoc10]), Rauzy—Veech induction is represented with
its Rauzy diagram, a graph with vertices labeled with the corresponding interval ez-
change permutation which edges are labeled by top of bottom depending on which
interval wins in the induction and points to the corresponding new permutation. As
a win-lose induction, we prefer to label the edges by the losing label. In Figure 2, we
represent Rauzy diagram for a 3-IET with the labeling of its corresponding win-lose
induction.
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/\ /_\
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Figure 2: Rauzy diagram for 3-IET.

Let FF = (VF7 EF) be a subgraph of a win-lose induction base graph G.

Definition 1.4. A family of linear subspaces H = {Hy}vev is tnvariant for the
subgraph F if for all edge e : v — v’ in EF

M.H, = H,.

When we have such a invariant family, the win-lose induction satisfies for all edge
e:v—=v of F, O.(K°NH,) = Rf N H,. One can then restrict © to the parameter
space

H(F,G)= |J {v} (Rf n H) .
veVFEF

and define similarly
Ag(F,G)=H(F,G)/ ~.

Remark 1.5. Theses concepts are useful to describe Rauzy—Veech induction for
linear involutions. We describe a similar win-lose induction as for IETs, but for
linear involutions there is a condition on top and bottom length to match that defines
an invariant family of linear subsets. This family is invariant for a subgraph where
some edges are forbidden, namely those that point to a permutation for which this
condition cannot be true.

The subgraph F is given by vertices on the top line and thick edges. This example
and its generalizations will be explained in details in Section 2.
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Figure 3: Piece of Rauzy diagram for linear involution on 3 intervals.
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Figure 4: Rauzy diagram for 3-IET with a flip.

Roof function Let us define the roof function for (almost) all z € A(G) as
follows. Let e be the edge from vertex v to v’ such that x € {v} x M.A,:, we set

r(x) = —log <’]\4|;x’> .

Suspension semi-flow Define the suspension space A(G)r := (A(G) X R)/ ~,
where for all (z,t) € A(G) x R we have the equivalence (z,t) ~ (Tz,t 4+ r(x)) . The
associated suspension semi-flow is defined on A(G),, for all t > 0, by

ot (z,8) = (z,8+1).

Notice that this flow is defined such that the first return map to the section A(G) x
{0} is T and its return time is 7.

Denote by M, the set of T-invariant Borel probability measures with p(r) :=
1) A®G) rdu < +oo. Every ¢-invariant Borel probability measure pr on A(G), can be
decomposed as a product of a measure p € My, and the Lebesgue measure on

fibers. Namely,
fir = (u(r)) " (1 x Leb) aca), -
The Kolmogorov—Sinai entropy of the flow for this measure is written h(¢, ix)
and satisfies Abramov’s formula

h(T, p)

no. i) ==

where h(T, 1) is the Kolmogorov—Sinai entropy for 7. In this setting the topological
entropy can be defined as

htop(d)) = ESJHAP h’(¢7 ﬁT‘)
BEMT

1

3

3

1

2
2

)



The induced measure fi, for p € Mr,, at which this supremum is achieved (and by
extension p itself) is referred to as a measure of mazimal entropy.

Again the same suspension can be defined for a subgraph on Ay (F,G), =
(Ap(F,G) xR)/ ~.

1.2 Non-degenerating properties
1.2.1 Classical Rauzy diagrams

Assume that, on a non-trivial subset of labels £ C A, the parameter in Riﬂ have
coordinates in £ infinitely smaller than others. At a vertex that with at least one
outgoing edge labeled in £, any edge labeled outside of £ must win. Hence, the map
T will remain in a subgraph in which we remove such edges not labeled in L.

This motivates the introduction of the degenerate subgraph G* having the same
set of vertices V' as G but for which we remove edges along which a letter in £ wins
against a letter not in £. For a vertex v € V in G-, the set of outgoing edges is
defined as follows.

o IfI(E,)NL#AD
Ef ={e€ E,|l(e) € L}.

o Otherwise
Ef = E,.

Definition 1.6 (Non-degenerating graph). We say that the base graph of a vector
memory random walk is non-degenerating if it is strongly connected and, for all
0 C L C A and all vertices v in a strongly connected component € of G*, one of the
following properties holds:

1. There is a path from v in G labeled in L leaving € .
2. l(By)NLI < 1.
In plain words: from any vertex, no letter in £ can win against another letter in

L in any strongly connected component of G except if there is a path labeled in £
leaving the component.

It is easy to check that this property is satisfied by a Rauzy diagrams associated
to an irreducible IET (see Proposition 2.15 in [Fou24]). This implies many ergodic
properties for Rauzy—Veech induction in this case, as a consequence of the following
theorem in [Fou24].

Theorem A. FEwvery non-degenerating win-lose induction has a unique invariant
measure equivalent to Lebesgue measure and it induces the unique invariant proba-
bility measure of mazimal entropy for the (semi-)flow on its canonical suspension.

Moreover, the entropy of the canonical suspension flow is equal to |A].

1.2.2 Non-degenerating subgraphs

In certain cases, such as those illustrated in Figure 3 and Figure 4, it becomes
necessary to consider a subgraph F' of a graph G that defines a win-lose induction.
Within such subgraphs, we often encounter vertices that have a unique outgoing

edge.
From a dynamical point of view, these vertices can be bypassed in the orbit of
the win-lose induction, until we encounter a branching vertex — that is, a vertex



with multiple outgoing edges. This observation motivates the introduction of a
factorization of the graph.

More precisely, we aim to associate to each degenerating subset of labels a cor-
responding subset of vertices, on which we define an accelerated version of the in-
duction, distinct from the one induced on the factor graph.

To ensure that this acceleration process remains well-defined and finite, we first
impose a structural condition on these families. Furthermore, since we wish to
keep track of the labels in the degenerating subset, we require that each such label
intervenes only once at each step of the accelerated induction.

Definition 1.7 (Filling factoring family). Consider, for all ) C £ C A, a subset Vr.

of vertices of F' such that every loop in this subgraph contains a vertez in Vc. Let
E* be the set of finite path in F such that

e [ts start and end vertex belong to \75 and no other visited vertices do.
o Along this path, no letter in £ wins against a letter not in L.

The degenerate subgraph Fr is composed of edges appearing in paths of E-.

We say the collection {\N/L} is a filling factoring family if every L-factor path ~
visits at most one branching vertex v satisfying l(Ey) N L # @ and which is not the
end vertex of v. We call v the L-branching vertex of v when it exists.

Notice that we say a letter o wins against another letter 5 along a path v =
e1...en if @ wins against 8 along an edge (in G) or « wins against § which has won
against [ before, etc. In other term, if the matrix M, ... M., is positive on its
coordinate «, 3.

A generalization of the non-degenerating criterion is then defined for such fami-
lies.

Definition 1.8 (Non-degenerating family). A filling factoring family {‘75}5 forms
a non-degenerating factorization of the subgraph F if for every § C L C A and
L-factor path v € EX contained in a strongly connected component € of Fr one of
these properties is true.

1. There exists a path in F starting at a vertex of v which leaves € and such that
each edge in the path based at a branching vertex of F' is labeled in L.

2. All edges in ~y are labeled within G by letters not in L.

8. The path has a L-branching vertex with a unique outgoing edge labeled in L
and each label winning against a letter in £ along v is in I(EY) \ {a}.

4. The path does not meet any L-branching vertez, there is a unique winning label
B and at least one losing label not in L.

Notice in particular similarities of 1 and 3 in this definition with 1 and 2 in
Definition 1.6.
A generalization of Theorem A to this setting was also proved in [Fou24].

Theorem A’. Consider a subgraph of a win-lose induction which has an invariant
family of linear subspaces H and a mon-degenerating factorization. The map T re-
stricted to A (F,G) has a unique invariant measure equivalent to Lebesgue measure
and it induces the unique invariant probability measure of maximal entropy for the
(semi-)flow on its canonical suspension.

Moreover, the entropy of the canonical suspension flow is equal to dim H.



1.3 Central Limit Theorem

On Ay (F,G), there is a natural metric given by Hilbert metric on the simplices AC.
And one can associate a product metric on 3? with the euclidien metric in fibers.

For a > 0, let us denote by H® (KTG) the space of a-Hélder functions for this
metric. The canonical suspension flow in these cases also satisfies the following.
Theorem B. Let p > 2 and let ¢ € H"‘(ﬁ?) n Lp(ﬁf,ur) satisfy [ odp, = 0.
Assume that there does mot exist {/; € L? (KTG,,ur) differentiable in the direction of
the suspension such that ¢ = thz where X; is the Lie derivative in that direction.
Then there is a positive constant oy such that

T
\/%/ wod dt -4 N'(0,04) as |T| — oco.
0

Where the convergence is in distribution to a normal law of variance og.

2 Rauzy—Veech inductions

2.1 Definitions

For w a finite word in the finite alphabet A we denote by |w|, the number of
occurrences of the letter z € A in the word.

Definition 2.1 (Signed matching). A signed matching m = (v,w, €) is given by two
words v and w in an alphabet A which satisfy, for all x € A,
Vo + ol =2
and a sign map
e: A— {£1}.
For a length vector A € Rﬁ we denote the length of w by

|w]

Aw) := Z Aw, -

Definition 2.2 (Linear involution). Let m = (v,w,¢€) be a signed matching and a
length vector X € R{ such that \(v) = MNw). We call the couple (m,\) a linear
involution.

Definition 2.3. If the sign map of a linear involution (m, \) satisfies, for allx € A,

e@:{ Lif =1

—1 otherwise.

we say that (m, ) is a linear involution without flips, otherwise with flips.

Definition 2.4 (Interval exchange transformation). An interval exchange is a linear
involution (m, X) such that for all x € A, |v|s = |w|e = 1. If moreover e = 1 we say
that (m, A) is an interval exchange without flips, otherwise with flips.

Definition 2.5. Let (v,w, €, A) be a linear involution. We denote L := A(v) = AMw)
and the interval I = [0, L[. For each label I € A, we define two points £,&} in the
interval I together with a number o € {0,1}.



e Ifl occurs twice in v at indices 1 < p < q < |v|, then:
p—1 q—1
g?:Z)\V” 51122)‘1/1-7 and o, =0.
i=1 i=1
o Ifl occurs twice in w at indices 1 < p < q < |w|, then:
p—1 q—1
@-S . €=, ad a-o
j=1 j=1

e Ifl occurs once in v at index 1 < p < |v| and once in w at index 1 < q < |w|,

then:
p—1 q—1
&= My &= Ay, and or=1.
i=1 j=1

Forc € Z/2Z andl € A, we denote by If the subinterval |&7, &7+ i[C I. Consider
the unique linear map f{ : I} — IlCJrl with constant derivative equal to €(l). It can
be explicitly expressed for all x € If by

Fra) =gt ) (o6 - 3 )+ 3

Let S be the set of all points &. We define an involution f on I'\S X Z/2Z by, for
z € If and o9 € Z/2Z,

J(@,00) = (J@),00+ ) -
Remark 2.6. This associated map motivates the name for the couple of signed
matching and length vector. They correspond to linear involutions with and with-
out flips, as considered in [DN90O] and [BL0Y] respectively. In the case of interval
exchange, the map always changes the element in Z/27Z and can be factored into a
translation map on the interval I, as defined in [Yocl10).

Moreover, this association can clearly be performed in the other direction, from
the involution map to a signed matching with a length vector.

The existence of a linear involution is central in the definition of Rauzy—Veech
induction. But for some signed matching the condition on lengths can clearly not
be met. For instance, see the matching with all double letters on top in Figure 3.

Definition 2.7. We say a signed matching m = (v,w,€) is balanced if m is an
interval exchange or there exists a letter a in v and b in w such that |v|, = |w|p = 2.

Proposition 2.8. A signed matching m is balanced if and only if there exists a
length parameter X such that (m,\) is a linear involution.

Proof. Assume without loss of generality that all letter « in v are such that |v|o = 1,
then A(w) — A(v) = 2#{Xs | B € A and |w|g = 2} = 0. Which can only be true if
the set of double letters is empty.

Conversely, the existence of a length vector is straightforward for interval ex-
changes and when there are double intervals on top and bottom. O

We denote by X(G,) the set of signed matching on n letters and 3¢(Gn) the
subset of signed matching such that either it is unbalanced or the last letters of the
words v and w are equal. For z,y € A, let us introduce the substitutions

1
SpyiT =Ty



and

s;; T =Y.
For all non-empty word w we denote by w the same word to which we have removed
the last letter.

Definition 2.9. The Rauzy—Veech induction for n > 2 is the map

Ry : 2(Gn) \ Z0(Gn) x RT — 3(Gn) x R
(V’waea)‘) — (Vlﬂw,7€/7)‘/)'

where for a, B the (distinct) last letters of v and w, the image is defined as follows :

o If Ao > g,
v s;(yaﬂ) @) «,
W =503 @),
€(B) = e(a)-e(B),
Xy = Aa — Mg
o IfAs > Aa,
v = s (),

The coordinates that are not mentioned for ¢ and N are kept unchanged.

Invariant linear form The difference A(v) — A(w) is preserved by the Rauzy—
Veech induction. Classically, the Rauzy—Veech induction is only defined in the case
A(v) = AMw) on maps associated to linear involution or interval exchanges.

In other terms, the family linear forms defined to each vertex (v,w,e€) of G,
defined for all A € R by

Sw.e(A) = AMv) — Aw)
is preserved by composition with the induction. Hence its kernels form an invariant

family of linear subspaces.

Proposition 2.10. The linear form 0., intersects the positive cone if and only if
m is balanced. In particular, for m to intersect the positive cone it is necessary that
m € Fn.



Geometric interpretation Let us mention here that there is a geometric in-
terpretation of these maps. It is not necessary to our definition but may help the
reader to understand its intuition. As in Section 2.1 of [BL09], the linear involution
can be seen as the first return map for a foliation on a surfaces on a transverse
interval. The interval is duplicated to separate cases where the leaf arrives at the
top or bottom of the interval.

Let s is the map switching values 0 and 1 in the second coordinate, i.e. for
(z,00) € I\S XZ/2Z by s(x,00) = (x,00+ 1), the orbits of the composed map so f
correspond to the intersection of the leaves of the foliation with the interval. Such
maps associated to a foliation depend on the choice of interval and Rauzy—Veech
induction is a natural induction which builds up from a linear involution another
one implied by the first return map of the same foliation on a different interval.

The following is proved in Section 2.2 of [BL09].

Proposition 2.11. Let L = (v, w, ¢, A) be a linear involution. The linear involution
L is the image by Rauzy—Veech induction of L if and only if its associated map
so frr is the first return map of so fr on

10, max (A(¥), \(@))] x Z/2Z.

=2
PR
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Figure 5: Linear involution as a first return map of a vertical foliation.
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2.2 Win-lose induction

Rauzy—Veech induction can be seen as the win-lose map associated to graph G,
whose vertices are all the signed matching in ¥(G,). Edges going out of a vertex
associated to a given signed matching (v,w,e) € 3(Gn) \ 20(Gn) are defined in
Figure 6. The change on ¢ maps are not written down to simplify the presentation
but are clear from the definition of the induction given above.

The image signed matching by Rauzy—Veech induction can be in Xo(G,). In this
case, the Rauzy—Veech induction is not defined and stops. Such vertices are thus
defined in G,, to have no outgoing edges.

Property 2.12. For a vertex v, if there is a letter in the labels of E, that is not in
L, this property is preserved along L-factor paths in G, or a subgraph of it.

10



sy @)\ P (v)—= i 7)
529 (@) w sy (@) - B

Figure 6: Outgoing edges for a given signed matching

Proof. 1t is a key property of Rauzy—Veech induction that a letter winning along an
edge from v to v’ appears in the labels of edges going out of the ending vertex v'.
But by the definition of L-factor path of a subgraph, there is no letter in which a
letter in £ wins against a letter not in £. Thus, as there is at least one letter not
in £ going out of v, no matter whether the losing letter is in £ or not, the winning
letter is not. And this is true all along the branch path. O

Property 2.13. Consider a path vy starting with an edge e from vertex v. In G,, if
a wins against e, then either it is contained in [(Ey.,) or a letter in this latter set
wins against o along 7.

Proof. Again we use the fact that the winning label remains in the outgoing edge of
the next vertex. Then notice that if 5 wins against « along 1 and § wins against
B along the next edge e’ then § wins against o along v; - ¢’ and § appears in labels
of the edges going out of the ending vertex of e¢’. We then prove the proposition by
induction. O

Let Fn be the subgraph of G, from which we remove vertices in ¥o(Gn) and
edges pointing to them. We denote them respectively by F' and G.

A strongly connected component of a directed graph is by definition a maximal
subgraph such that all distinct vertices v and v" have a directed path from v to v’
and from v’ to v.

‘We can associate to any directed graph a directed acyclic graph which vertices are
labeled by strongly connected components and for which we draw an edge between
two vertices if there is an edge connecting the two strongly connected components
in the graph. It is classically called the condensation graph of a directed graph (see
for instance section 3.4 of [BMO08]). There are minimal vertices in this acyclic graph
which have no outgoing edges. Vertices in the corresponding strongly connected com-
ponents, called the minimal component, have no edges pointing to another strongly
connected component in G. In particular the only outgoing edges that appear in G,
and not in such a component are pointing to vertices in 3o(Gy).

Definition 2.14. A strongly connected components of F, for which the set of la-
bels of edges is the whole alphabet A is called an irreducible component. A signed
matching in such a component is also called irreducible.

For interval exchanges, irreducible signed matching (v, w, €) is fully characterized
by the fact that their is no non-trivial decomposition v = v' - % and w = w' - W?
such that the set of labels appearing in v! and w! (and thus in v? and wz) are equal
(see e.g. [Yocl0]).

For linear involutions without flips, irreducible signed matching are characterized
in [BLO9] Definition 3.1. It is also proved in that work that such objects come from
a geometric model (as the first return map on an interval of the vertical foliation of
a half-translation surfaces).

It would be interesting to consider the following question.

11



Question 2.15. Characterize irreducible signed matchings in cases with flips.

Property 2.16. Let v be a vertex in an irreducible component such that there is a
unique edge labeled by o going out of a v. Let v be the path in G, from v to v’ such
that only its start and end vertexr have an outgoing edge labeled by o in G,. Then,
either v’ has two outgoing edges or if 3 is the letter that loses against o at the first
edge, v’ has a unique outgoing edges and o wins against its label along this edge.

Proof. Let us consider a path from F£ to itself. Assume it contains a loop + starting
(and ending) at a branching vertex for which none of the labels of outgoing edges
are in L. Let e : v — v’ be the first edge in 7 such that there is an edge going out of
v’ which is labeled in £. Let a be the label of e and 3 the label winning against
along e. For all label § winning against a label in £ at an edge in v we have either
[ =6 or 6 wins against 8 along . O

Proposition 2.17. Irreducible components of the Rauzy diagram are non-degenerating.

Let us define

\71;:{1166'5|E§ﬁZ=(Z)0rEfﬁ£:(Z)or|Ef\:2}.

Proposition 2.18. A L-factor path associated to {‘75} cannot loop.

Proof. Assume there is a loop that does not contain a vertex in Vz. Then it is
composed of non branching vertices labeled in F' and its edge are labeled in £. The
loop then composes the whole strongly connected component and is labeled in a
strict subset of the alphabet. Which contradicts the irreducibility property. O

Proof of Proposition 2.17. Let v be a L-factor path starting at a vertex v and con-
tained in a strongly connected component € of Fp.

If ESNL =0. As F is strongly connected and contains all labels, there exists
a path ~ starting at v in F' which contains a vertex with a least one label that is
not in £. Up to taking a prefix of v, we assume its end vertex is the first vertex to
satisfy this condition. Thus all previous branching vertices have both their outgoing
edges labeled in £. By Property 2.12 the path v must leaves the strongly connected
component ¢ of v. Condition 1 is then satisfied.

If EFNL =0. Let a € £ be the first label v and 8 the label of the other edge in
G. Then 8 must also be in £ since otherwise a letter in £ would win against a letter
in £ along . Again by Property 2.12, in a L-factor path starting at v, all vertices
have at least one outgoing edge not labeled in L. Its ending vertex in V; then must
satisfy EX N £ = (. If the path is composed of only one edge, this falls in condition
2.

Otherwise, in intermediate steps there is always one edge labeled in £ in F’ which
must lose. And the winning letter along each edge of the path is always (8 since is
must be preserved by the fundamental property of Rauzy—Veech induction. Thus
condition 4 is satisfied.

If |[EF| = 2. Assuming the other condition are false, v is a branching vertex with
an outgoing edge a € £ and 8 € L. Again, along every edges of v, the winning letter
must be 5. If next vertex does not have an outgoing edge in £, we have condition 2.
We only have to consider the case when the path continues with edges labeled in £
from a vertex having a unique outgoing edge in F'. In this case, the letter winning

12



along the first edge, also wins along the next edges labeled in £. Satisfying condition
3. O

2.3 Consequences for IET and LI with flips

We first mention the following proposition.

Proposition 2.19. For all IET or LI with flips, there is a path to a signed matching
have the same two ending labels.

As a consequence, we can bound the Hausdorfl dimension of IET and LI with
flips which are not minimal.

Theorem 2.20. For a given signed matching m corresponding to a IET with flips,
the set of lengths \ € R‘_ﬂ such that a (m,\) does not contain a periodic orbit is
strictly smaller than |A|.

For LI, one needs to consider the restriction of the induction to the set of length
in the kernel of 4.

Theorem 2.21. For a given signed matching m corresponding to a LI with flips,
the set of lengths A € ]Rﬁ such that a (m,\) does not contain a periodic orbit is
strictly smaller than |A| — 1.

As noticed in Proposition 2.10, one can induced the win-lose map on the subgraph
of G,, on balanced signed matching by considering parameters in the kernel of the
invariant family of linear forms §.

3 Natural extensions

3.1 Zippered rectangles

In the case of interval exchange transformation a geometrical parametrization of
the natural extension of Rauzy—Veech induction has been introduced by Veech in
[Vee78]. He has named this construction zippered rectangles, expressing in a visual
way the intuition behind it. This construction was generalized to linear involution
in [BL0O9].

Assume v, w and € define a signed matching associated to an interval exchange
of linear involution (hence € is fully determined by the words). Assume there is a
(half-)translation surface that suspends the associated map or in other words that
one can find n vectors v in C labeled in A such that

e forallae A
§R(1/04) >0,

> S(va) >0,

acv(l...k)

o forall 1 <k < |y,

o forall1 <k < |wl,
S(wa) < 0.
acw(l...k)

Where w(1...k) denotes the length k prefix of the word w.
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Let us now consider the polygon obtained by representing these vectors starting
at point 0 one after the other in both orderings given by v and w. We identify pairs
of vectors with matching labels by translation or translation composed with central
symmetry (when € is respectively positive or negative). Then the obtained trans-
lation surface suspends the linear involution defined by the given signed matching
and the lengths (R(va))aca-

On this surface, one can represent the suspension data by considering the first
return of the vertical flow on the horizontal interval. Figure 7 represents these two
constructions.

Figure 7: Zippered rectangle construction.

Let A, be a marked alphabet containing two copies xo, 1 of each letter z € A.
We assume moreover, up to choosing a marking, that v and w are words in A,, such
that each copy of a letter appears exactly once in the concatenation of the words.

Let o be the involution of {0,1} which switches the two elements. For every
z € A, let f, be the bijections on {0,1} defined as

/ :{ id if e(x) =1,

o otherwise
We will use the notation ¢4 (i7) := fz(2) f=(4)-

For each interval, we consider the rectangle formed by the suspension of the
interval above the top and below the bottom domains corresponding to v and w.
The corresponding side in the polygonal surface representation cuts it horizontally
in a top and bottom half. Each vertical side are cut into two pieces — except for the
rectangles meeting the leftmost singularity. We denote their length by Z;; where i, j
are 0 or 1 for respectively left, right and down, up interval.

In the wording of Veech, these numbers define zip heights which express the
position of the singularities and enable us to reconstruct the surface. These heights
satisfy the properties in the following definition.

Definition 3.1 (Zip functions). Let m be a signed matching of linear involution.
Let ag, Bi € A be the last letters of v and w respectively and vm, Ny the first letters.
Zip functions for m are functions Zoo, Zo1, Z10, Z11 : Am — R such that

1. Zoo + Zo1r = Z1o + Z11,

14



2. Zij (mg(k)) = sz(ij)(xk) fO'/' all x. € A and i,j S {O, 1},
3. Zhi(xk) = Zoi(y) for all zi,yi € Am such that xiy, is a factor of w;,
4 Zip10)(Qo(r)) = Zro(ak) = —=Z11(B1) = —Z.511) (Bo))s

Zoo("ym) = ZL,Y(OO) (’Yo’(m)) =0,
Zo1(Mn) = Zu,01)(Mo(ny) = 0.

5. for all z € am and i,5 € {0,1} such that Z;;j(zk) does not appear in the

previous list,
Zij(xk) > 0.

Condition 2 can be understood according to Figure 8.

(a) A (b) —A

Figure 8: Identification of the zip functions when applying -id.

(673 Zu(Oék)

Tm [
! \ Z11(B)

Z10(B1)

Zo0 () ' » Z1o(0¢k)g¥ I

Tn B

Zo1(Ym)

Figure 9: Zip functions around the leftmost and rightmost singularities.

These functions induce a height map h : A — Ry defined for all « € A and
i,j € {0, 1},
ha) == Zio(oy;) + Zir ().

According to properties 1 and 2 of the definition, this does not depend on 1, j.
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Remark 3.2. We denote by Z,, the space of maps satisfying these conditions for
a signed matching m. Notice that it is a subcone of a vector space on which all
coordinates but one (corresponding to Condition 4) are assumed to be positive.

Let
Sy = I_I ({m} x RY x Zm)
me3(Gn)\E0(Gn)

be an extension of the parameter space ¥(G,) \ £o(Gn) X R} on which Rauzy—Veech
induction is defined. One can extend Rauzy—Veech induction

Rt (r,w, 6, A, Z) € S — (VW' €N, 2Z') €8,

Where (v',w’,€") and X are like in Definition 2.9 and Z’ is defined by the formulas
below.

These formulas are motivated by an induction on the underlying surface of a
zippered rectangles construction. We cut off a triangle on the left-hand side of the
surface and glue one side of the triangle to the polygon.

Remark 3.3. We express Rauzy—Veech induction on only one marking, the action
on the other marking of the same letter is defined to preserve Property 2 in the
definition. Other values that do not appear in the definition are unchanged.

16



Formulas for induced zip functions.

If bottom is winning,

Z10(Bt) = Zoo(a)
Z11(B1) = —Zoo(ax)
Z} 400y (k) = Zoo(ak)
Zz{ﬁ(m)(ak) = Zo1 (o)
Zy510) (k) = Zro(ak)
Zigan(or) = Zu(ax)
(675
.~’\
Q'
B
If top is winning,
Zio(ar) = —Zo1(Br)
Z11(ax) = Zo1(B)
ZLa(oo) (ﬂl) = ZOO(ﬂl)
Z, o0 (Bi) = Zo1(B1)
Z,.10)(B1) = Z10(B1)
Z,.an(B) = Zu(B)
(6795
M'

B

+h(B)

+h(8)

+h(B)

17
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Proposition 3.4. If m’ is the image signed maching then Z' € Z,,/.

Proof. This fact is clear when considering the geometric interpretation of the induc-
tion. But we will check it directly on the formulas to convince the reader that they
correspond to the construction.

Let us consider the case where bottom — letter 8 — is winning. The other case

is closely similar.

1.

Property 1 in the definition is obviously preserved.

2. Property 2 is preserved since we defined the induction on the other marking

using this property.

3. Two consecutive letters z,ys remain consecutive in v’ and w’ if z, >y and
(O]

Ys 7 Q.

If (8) = 1, a factor B,(;)ys appears in v’ and we have two new consecutive cou-
ple of letters 8, yax and arys after induction. Remark from the equations that
Zio(ﬂl) = Zﬁﬁ(oo)(ak) = Z(/)O(ak) hence Zio(ﬂa(l)) = Zio(ﬁa(l)) = Z(/)O(ak)~
And Zio(ak) = Z10(B) = ch)o(ys)'

If e(8) = —1, a factor =83, appears in w’ and we have at most two new
consecutive couple of letters z,ayp and akﬂa@ after induction. Again we
have Zio(B1) = Z,,(0)(ck) hence Zii(ak) = Zo1(Bowy). And Zii(zr) =
Zo1(Bory) = Z10(B1) = Zo1 (o).

4. Let aj, be the last letter of v and 7, the first letters of w’. If o’ # « then

ajay is a factor of v and
Zyo(on) = Zro(air) = Zoo(aw) = —Z11(B1).-

If €(8) = 1 the first letters of v and w remain unchanged. But we can have
o' = a. In this case, B, you is a factor of v’ and

Zio(or) = Z, 410y (ar) = Z10(B1) = Z10(Bory) = Zoo(ar) = —Z11(B1)-

If €(8) = —1, the unique delicate case is when (3, ;y is the first letter of w. Then
N = o and axBe( is a factor of w’. Thus

Zin (M) = Z, 10y () = Z10(B1) = Zo1(Boy) = 0

5. Finally Z:B (ij)(a),) DECOmES positive since we add heights to potentially negative

zip values. Only ZZB o1y (k) = Zo1(ax) may be zero but this would mean that
either e(a) = 1 and a, () = 7n or €(a) = —1 and A,y = ¥m which is not
possible in a linear involution.

O

By the interpretation of zippered rectangles as suspension flow of the linear

involution and Rauzy—Veech induction as a first return map, the suspension time
above the losing interval should be added the one above the winning interval. We

aga

in prove this property using the defining formulas.

Proposition 3.5. Let h and b’ in R be the height function and its image by the
extended Rauzy—Veech induction. If M. is the matriz of the induction defined in the
win-lose formalism, then

B = M:h.

18



Proof. Just notice that, in the formulas, the height of the winning letter is unchanged
and we had the height of the winning letter to the height of the losing one. O

Definition 3.6. Let
A% = (XA eR} | Ao < As}

and
AL = {XAeR} | Ao > As}

where o, B denote the last letters of the two words of m. These length parameter
spaces correspond to bottom or top winning respectively.

Let
20 ={Z € Zn| Zio(aw) >0} ={Z € Z,. | Z1.(B) < 0}

and
2y =1{Z € Zm | Zio(ow) <0} ={Z € Zm | Zu1(B1) > 0}

where ay, Bi denote the last letters of the words of m in the marked alphabet.

Proposition 3.7. For any signed matching m, Rauzy—Veech induction restricted to
({m} x A}, x Zm) U ({m} x A}, x Z) defines two invertible linear maps

Ro(m) : {m} x Ap, X Zpn — {mo} X Ay X Zen,

and
Ri(m): {m} x A}, X Zim — {m1} x Ay % 20,

Proof. Let us consider the case where bottom is winning. Injectivity is obvious from
the definition thus we only need to prove that the image of zip functions is Zgno. The
inclusion in Z,,, was proved in the previous proposition, let us show that Z1,(8;) <
0. Notice that by definition we have Z1;(81) = —Zoo(ak) = —Z,,(00)(Cto(x)) and
a # B. If a does not appear as a letter at the beginning of v or w then condition 5
implies the inequality its values clearly cover the whole set. If « is the first letter of
v, then e(a) = —1 and Zoo(ae(k)) = Z11(ar) = 0. If a is the first letter of w, then
e(a) = 1 and Zo1 (o)) = Zo1(ax) = 0. In these two cases, the equality does not
affect the value of Zpo (i) which is then again positive by condition 5.

Finally, negative zip heigths become positive by the last part of the previous
proof and their values again cover all positive values. O

Proposition 3.8. The extended Rauzy map Rn is a bijection on its image.

Proof. Assume bottom has won, one can revert the action on the sign matching by
finding the losing letter. It must be next to the twin label of the winner. The value
of € being unchanged for the winner (which is the last letter on top). And it is the
same if top has won. R

One can then construct the inverse of R,. We decide which letter has won by
looking at the sign of Z11(8;) and take the inverse by the corresponding map in the
previous proposition. O

Consider H,, the vector subspace of R*™ satisfying equalities in conditions 1-4.
Consider the canonical basis of R*™ and extract a basis for H,,, which be endowed
with a canonical scalar product. The space Z,, is a subcone of H,, where all but
one coordinates in the basis are positive.

From the definition equations we have the following decomposition of the linear
map associated to the extended Rauzy—Veech induction.
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Proposition 3.9. Let m be a signed matching and m' its image throught R; with
1 € {0,1}. There exists an orthogonal map U : Hy, — H,,s and a vector v(h) € Hp,,
whose coordinates are positive linear combinations of heights, such that ﬁn acts on
H,, as U +v(h).

In particular, for a given zip fonction Z, the image zip function Z*) after k steps
of induction, can be expressed as Z*) = U® Z40(*) where U® is an orthogonal ma-
trix and v® is a linear combination of heights along the path h(0), h(1), ..., h(k—1).

By Proposition 3.5, the scalar product between A and h is preserved. It corre-
spond geometrically to the area of the surface. One can thus consider the induction
restricted to the subspace of parameters where the scalar product (A\,h) = 1. On
this subspace we have the following key lemma.

Lemma 3.10. The extended Rauzy—Veech induction restricted to parameters where
(A, h) =1 is the natural extension of Rauzy—Veech induction.

Proof. We proved in Proposition 3.8 that the extended Rauzy—Veech induction is a
bijection. The set of parameters with (A, h) = 1 projects surjectively to all possible
lengths. It remains to prove that the coding in the past of a given zip function Z
determines it uniquely for almost all paths. We follow Bufetov’s scheme of proof in
[Buf06].

Consider a path 7. = e1...e, in the Rauzy diagram for which the associated
path matrix A = M., ... M., is positive. Let us consider the unique invariant
measure equivalent to Lebesgue. For almost every lengths and zip parameters, in
the corresponding bi-infinite path

Y= V=kY—k4+1-- - Y=17Y0Y1 - - Ve—1VE - - -

in the Rauzy diagram, the positive path 7. appears infinitely many times in the
future and the past of the coding (see e.g. Proposition 2.8 in [Fou24]). Moreover,
by Proposition 3.5, the action of Rauzy—Veech induction on the heights of zippered
rectangles is given by the transpose of paths matrices. Thus if M(_y is the matrix
induced by win-lose induction along v_x ...70, h € M(t_ k) Rﬁ. As A is uniformly
contracting Hilbert distance on the projectivized parameter space,

(N M{_) - RY =Ry - hoo
k=0

is reduced to one ray and thus the heights A is defined uniquely up to a multiplicative
constant by the past coding ...v_rY—k+1--.70 (see e.g. section 3.1 in [Fou24]). The
condition on scalar product then defines it uniquely.

Moreover, coeflicients of M(_j) go to infinity as k goes to infinity. The height
of zippered rectangles at step —k satisfies M{_, h(—k) = h thus h(—k) — 0 and
Z(=*) — 0 since its coefficients are bounded by the heights.

Using the previous proposition, we see that the zip functions Z(=®) such that
after k steps of Rauzy—Veech induction we get that Z can be expressed as

7 = U(—k)Z(—k) + v(—k)
with U orthogonal and v(—k) depending only on heigths h(—k), h(—k+1), ..., h(—1)

which themselves are determined by the past coding. Hence Z = lim,, oo ™™ (h(—n))
and thus Z only depends on the past coding for almost every points. O
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Remark 3.11. The Lebesgue measure on the space of zippered rectangles is clearly
invariant by extended Rauzy—Veech induction. This measure can be introduced in-
trinsically directly on strata of Abelian or quadratic differentials and is commonly
called Masur—Veech measure (see [Zor06] for more background).

3.2 Teichmiiller flow

By classical results of the theory, Teichmiiller flow is finite-to-one semi-conjugated
to the extension of Rauzy—Veech induction to zippered rectangles. According to
Lemma 3.10, it corresponds to natural extension of Rauzy map.

Thus, the ergodic ergodic properties of the canonical suspension flow for Rauzy—
Veech induction ergodic properties for the Teichmiiller flow on connected components
of strata of abelian or quadratic differentials.

In the following we show that Masur—Veech measure is the unique measure of
maximal entropy for these flows as well as Central Limit Theorem. These results
where known in the case of Abelian differentials [BG11], [Buf06], . This also implies
a common proof for exponential mixing which where proved by [AGY06] in the case
of Abelian differential and [AR12] for quadratic differentials.

Abelian differentials Let R be a connected component of Rauzy diagram. Let
T : Agx — Agr be the natural extension of Rauzy—Veech induction, where Axr is
the associated space of zippered rectangles. Let ¢; be the canonical suspension flow
associated to T'. And g: the Teichmiiller flow on the stratum.

Theorem (Veech). For every connected component of a normalized strata of Abelian
differentials H1, there exists a connected component in Rauzy diagram R and a finite-
to-one map Tr : Ar — Hi such that g 0 Yy = g 0 TR.

The Lebesgue measure induces by pull back an invariant measure on Ar and
integrating along fibers of the suspension an invariant measure p on Ag absolutely
continuous with respect to Lebesgue measure.

Corollary 3.12. The Masur—Veech measure on normalized strata of Abelian differ-
entials is finite and it is the unique measure of maximal entropy for the Teichmiller
flow and its entropy is equal to |Al.

Quadratic differentials The family of linear forms defined by 6y w,e)(A) =
A(v) — A(w) is invariant with respect to the induction. As we saw in Proposition 2.8,
the kernel of this linear form intersects the positive cone if and only if the linear
involution is balanced. As a consequence we have.

Proposition 3.13. For linear involutions without flips, the induced map on the
subgraph Fy satisfies hypothesis (LebH).
Proposition 5.2 in [BL09] and results of Section 3 in [Zor08] imply the following

result.

Theorem (Boissy—Lanneau, Zorich). For every connected component of a normal-
ized strata of quadratic differentials Q1, there exists a connected component in Rauzy
diagram R and a finite-to-one map 7r : Ar — Hi such that Tr oYy = gt o TR.

Corollary 3.14. The Masur—Veech measure on strata of quadratic differentials is
the unique measure of maximal entropy for the Teichmiller flow and its entropy is
equal to |A| — 1.
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