Multidimensional continued fraction algorithms as
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Abstract

The theory of continued fractions provides a fundamental characterization of the
speed of approximation of real numbers by rationals. Generalizing this theory to
multiple dimensions has led to the study of numerous piecewise projective linear
maps, which encode sequences of rational approximations for vectors in R?.

In this work, we introduce a unifying framework, the win-lose induction, which
interpret these maps as elementary dynamical steps through a labeled graph. We
describe a general strategy to associate a win-lose induction to a given multidimen-
sional continued fraction (MCF) allowing us to establish a rigorous bridge between
MCF algorithms and Rauzy—Veech induction. By checking a criterion on their cor-
responding graph, we prove that classical MCF algorithms — including Poincaré,
Brun, Selmer, Jacobi-Perron, Skew-product, and Arnoux-Rauzy-Poincaré — admit
an invariant ergodic probability measure equivalent to Lebesgue. This measure in-
duces the unique measure of maximal entropy for the associated canonical suspension
flow and this flow satisfies an exponential mixing and Central Limit Theorem.

Furthermore, we extend our methods to study fractal sets arising from bounded
continued fraction expansions, showing bounds on the Hausdorff dimension of such
fractal set strictly smaller than the ambiant space (generalizing results of Berthé-
Lee) as well as new explicit bounds on the Hausdorff dimension of Rauzy gaskets.

These results provide a systematic approach to the ergodic analysis of MCFs and
their associated fractal structures, strengthening and extending previous works in
the field.
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For a real number, the speed of approximation by rational numbers is completely
characterized by its continued fraction expansion. From a dynamical perspective that
expansion is the coding of an orbit for an elementary dynamical system: the Gauss map
G(z) = {%} It associates to any irrational number = in (0,1) a sequence of positive

integers a, := G+1(T)J for n > 1. The resulting sequence of rational numbers
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converges to x as n — oo and provides the best approximations of z, satisfying the
property that for all integers a,b > 0, if [bx — a| < |gx — pp|, then b > ¢,. This is a most
remarkable phenomenon, central to the study of real numbers.

The theory of multidimensional continued fractions attempts to generalize this phe-
nomenon to the approximation of real vectors by rationals with common denominators.
To achieve this, numerous elementary dynamical systems — mostly piecewise projective
linear maps — have been introduced and studied. Their ergodic properties are directly
linked to the quality of approximation of the sequence of rational vectors they produce.

The first step in generalizing continued fractions is to recognize that the Gauss algo-
rithm arises as the first return map of an even simpler map: the projectivization of the
Euclidean algorithm,

, 2 (v —y,y) ifx>y

As ® commutes with multiplication by a positive number, its projectivization is often
considered to study its dynamics. In projective chart « + [z : 1 — z] the map then
becomes the so-called (unsorted) Farey map
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Many, if not all, Multidimensional Continued Fraction (MCF) algorithms (e.g. every case
surveyed in [Sch00]) can be analogously described using similar maps in higher dimen-
sions. These maps usually involve subtracting certain coordinates from others based on
their order in size.

Another important perspective on Diophantine approximation is to relate it to the
geodesic flow of the modular curve. A geometric generalization of this flow can be made
through the moduli spaces of higher genus Riemann surfaces. In this case, the Gauss map
generalizes with the Rauzy—Veech induction. This induction is a map on the product of
a positive cone with the vertices of a graph. It is also described in an elementary way:
it compares two coordinates of the vector in the positive cone and follows one of the



Figure 1: Brun algorithm as a win-lose induction

two outgoing edges of the considered graph vertex according to the order of these two
coordinates; the larger is called the winner and the other the loser.

These maps serve as inspiration for the new framework we propose, the win-lose
induction which generalizes these elementary steps on a graph. The heart of this work is
thus to build a bridge between these two transverse perspective, enabling us to bring the
rich ergodic techniques that have been developed for moduli spaces of translation surfaces
in the past decades to the field of multidimensional continued fractions.

We explain a general strategy to associate a graph defining a win-lose induction to a
MCF and compute them for most classical algorithms. As an example, the graph for the
Brun algorithm in dimension 3 is depicted in Figure [I]

In [Fou25l, a criterion has been developed on the graph which implies strong ergodicity
properties on the MCF. The key object to consider are degenerate subgraphs which are
build as subgraph where a subset of labels L is preferred over the other for outgoing edges.
In other terms, the degenerate subgraph associated to £ consists in removing outgoing
edges not labeled in £ when there is a choice for an edge labeled in L.

The criterion then essentially checks that extremal strongly connected components of
degenerate subgraphs do not contain a vertex with more than one outgoing edge labeled
in £. In the case of Brun algorithm strongly connected components of degenerate sub-
graphs of Brun are simple loops on two vertices (see Figure [2]) which implies in particular
the criterion that we call non-degenerating property.

Through various studies, many ergodic theory tools have been introduced to study



Figure 2: Degenerate subgraph of Brun for £ = {1,2} on the left and its strongly con-
nected components (with multiple vertices) on the right

these approximations. However, these techniques require verifying ad hoc properties for
each of these maps and need refined considerations on the shapes of their cylinders (see for
instance [Sch00]) which makes them not straightforward to adapt to new examples. The
framework developed in this work encompasses all these maps and introduces a criterion
which is straightforward to check and that implies strong common ergodic properties
for all these examples. We address the so-called Poincaré, Brun, Selmer, Jacobi-Perron,
Skew-products, and Arnoux-Rauzy-Poincaré maps, thus covering all the examples listed in
Schweiger’s reference book [Sch00], strengthening the results of [Sch79], [Sch00], [BAGOI].

Theorem. Poincaré, Brun, Selmer, Jacobi-Perron and Skew-product algorithms in all
dimensions as well as Arnouz—Rauzy—Poincaré algorithm admit an invariant ergodic prob-
ability measure equivalent to Lebesque, and this measure induces the unique measure of
mazximal entropy for the associated canonical suspension flow.

The generality of this framework also allows for the study of fractal sets associated with
these maps, such as the set of points whose continued fractions expansion are bounded
by a constant — notably studied by [BL23] — or the Rauzy gasket. We present bounds
on the Hausdorff dimension of these objects, with in particular new explicit bounds for
the Rauzy gaskets, improving those obtained by Avila-Hubert-Skripchenko in [AHST6].

Theorem. For Selmer, Jacobi-Perron, and Skew-products, the set of real vectors whose
continued fraction expansion is bounded by a constant has a Hausdorff dimension strictly
less than the dimension of the ambient space.

Theorem. If G¢ denotes the Rauzy gasket in dimension d, we have the bounds
dimp (G?) < 1.825,
dimpy (G?) < 2.7,
dimg(G*) < 3.612



and an asymptotic bound for d going to infinity

log d

dimy(G%) < d 1+log2~(d+1)

+ O(d—l.SS)'
This also implies new strong ergodic properties for this algorithms. Which where
proved for Rauzy—Veech induction in [Buf06] and [AGY06].

Theorem. In each of these cases, the canonical suspension flow is exponentially mizing
and satisfies a Central Limit Theorem.

We also prove a Bowen-like result to interpret the measure of maximal entropy as the
limit of Dirac measures on periodic orbits. The statement of these results will be made
precise after introducing our framework in Section

Content of the article In Section [l we define the win-lose induction associated to a
labeled graph as well as a criterion on the graph called non-degenerating property. In a
companion work [Fou25], we prove that this criterion implies rich ergodic properties of
the associated map. Moreover, fractal sets naturally appear in this setting by studying
the parameters that remain confined to a subgraph. We have introduce a similar criterion
on these subgraphs to bound the Hausdorff dimension of these sets.

In Section [2, we start by associating a graph to two simpler examples, the so-called
Fully-subtractive and Poincaré maps, for which the image of the definition domains for
the linear maps is the entire positive cone. These maps are representative examples that
do not satisfy the non-degenerating property. In fact, their dynamics are not ergodic and
generically get eventually trapped into a subgraph (this is only known in dimension 3 for
Poincaré map).

In Section 3| we compute graphs for algorithms whose definition domains are not sent
surjectively to the whole simplex by the map, and prove our criterion on them. We show
how to compute the graph and its associated subgraph for the fractal set of numbers
whose continued fractions are bounded. In the end of the section, we introduce a graph
associated with a self-similar fractal constructed with piecewise projective linear maps,
the Rauzy gasket.

1 Definitions

1.1 Win-lose induction

Let G = (V, E) denote a finite graph labeled on an alphabet A by a function [ : E — A.
For every vertex v € V', we denote by F, the subset of edges in F whose start point is v.
We assume that the restriction of [ to F,, is injective.

Let VO be the subset of vertices in V' with no outgoing edges. For all v in V '\ V° the
family of sets indexed by edges e € E,, and defined by

K= {(Aa)aca € RY | M) < Aq for all a € I(E,) and o # I(e) },



forms a partition of R%' where Ry = {z € R | # > 0}. Additionally, we associate to each
edge e € ' a matrix
M.:=1d + Y N(a,l(e)).

a€cl(E,)

a#l(e)
Where N(a,b) is the elementary matrix with coefficient 1 at row a and column b. Such
that K¢ = M, - Rﬁ. See Figure |3| for a image of the trace of K% on the two dimensional
simplex with normalized sum of coordinates and A = {a, b, c}.

The win-lose induction associated to the graph G is a map
0:(VAVY) xR -V xRy
defined for every edge e from vertices v to v’ and all A € K¢ by O(v,\) = (v/,0.(N)),

where 4
o, Ke — R+—1
A= MIT'A

These maps are not well defined on the boundaries of subcones K¢. However, we overlook
this detail by referring to the entire space as its domain of definition since our primary
concern lies in their Lebesgue generic dynamics.

Consider a vertex v with two or more outgoing edges and a parameter A € Rf. In
analogy with Rauzy—Veech induction (see [Yocl0] for an introduction), we call loser of
losing edge the edge e such that A € K¢. Conversely, any other edge ¢’ in F, is called
a winner, and we say it wins against e. We sometimes say a label wins or loses when
there is no ambiguity to which edge they correspond.

The map © can be characterized as follows: it compares the coordinates of all edges
emanating from a given vertex v on the vector and subtracts the smallest coordinate
from the others it was compared to; effectively subtracting the losing coordinate from the
winning ones.

Let us consider the projectivization relation x ~ Ax satisfied for all A € R, and
z € R{. We denote by A := R7'/ ~ the simplex of dimension |.A| —1 and, for each v € V,
by {Ac}eer, its induced partition by {K}, . . The maps ©,. can be quotiented by this
relation and we denote the induced map by T, : A, — A. Similarly, © induces a map on
spaces AT(G) = (V\V?) x A and A(G) :=V x A denoted by T : AT(G) — A(G).

To study iterates of T', we consider the parameter space A>(G) := (), .y T "A(G).
Notice that if G is strongly connected, then, up to a zero measure subset, AT(G) =
A(G) = A>®(G).

Roof function Let us define the roof function for (almost) all x € A>°(G) as follows:
Let e be the edge from vertex v to v' such that x € {v} x M A/, we set

r(xz) = —log <|J\/[|ex| x|> .
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Figure 3: Action of T, on A, when v has two or three outgoing edges

Canonical suspension flow To define a suspension flow, one need to extend T to a
invertible map. Let us consider T' : A(G) — A(G) its natural extension. Notice that in
the non-degenerating cases, the space K(G) is isomorphic (up to a zero measure subset)
to the set of bi-infinite paths in G. R

Define the suspension space A(G), := (A(G) x R)/ ~, where for all (z,t) € A(G) xR
we have the equivalence (x,t) ~ (Tx,t 4+ r(x)) . The associated suspension flow is defined
on A(G)T, for all t € R, by

o (x,8) = (x,8+ ).

Notice that this flow is defined such that the first return map to the section A(G) x {0}
is T and its return time is r.

Denote by My, the set of T-invariant Borel probability measures with p(r) =
/ AG) rdp < +oo. Every ¢-invariant Borel probability measure g on A(G), can be

decomposed as a product of (the extension to A(G) of) a measure pu € M, and the
Lebesgue measure on fibers. Namely,

fir = (u(r)) ™" (1 x Leb) a(a), -

The Kolmogorov—Sinai entropy of the flow for this measure is written h(¢, ) and
satisfies Abramov’s formula
T, )

p(r)
where h(T,u) is the Kolmogorov—Sinai entropy for 7. In this setting the topological
entropy can be defined as

h(¢, 1) =

htop(¢) = sup (¢, fir).
HEMT

The induced measure fi, for y1 € My, at which this supremum is achieved (and by ex-
tension p itself) is referred to as a measure of mazimal entropy.



Non-degenerating property Assume on a non-trivial subset of labels £L C A the
parameter in ]R“_f_‘ have coordinates in £ infinitely smaller than others. When we are at
a vertex that has one outgoing edge labeled in £, any edge not labeled in £ must win.
Hence, the map T will remain in a subgraph in which we remove such edges not labeled
in L.

This motivates the introduction of the degenerate subgraph G having the same set
of vertices V' as G but for which we remove edges along which a letter in £ wins against
a letter not in £. In other words, the set of outgoing edges for a vertex v € V' in G is
defined as follows.

o IEI(E)NL#D
Ef ={ecE,|lle) € L}.

o Otherwise
Ef = E,.

Definition 1.1. We say that the base graph of a win-lose induction is non-degenerating
if it is strongly connected and, for all) C L C A and all vertices v in a strongly connected
component € of G, one of the following properties holds:

1. There is a path from v in G labeled in L leaving € .
2. l(EBy,)NL| < 1.

In plain words: from any vertex, no letter in £ can win against another letter in £ in
any strongly connected component of G, except if there is a path labeled in £ leaving
the component.

It is easy to check that this property is satisfied by Rauzy diagrams (see [Yocl0] for an
introduction). Our goal in this work is to prove it for classical multidimensional continued
fractions algorithms. We then can apply one of the main theorem in [Fou25|.

Theorem A. FEvery non-degenerating win-lose induction has a unique invariant mea-
sure equivalent to Lebesgue measure for its projectivized map and it induces the unique
invariant probability measure of mazimal entropy for the flow on its canonical suspension.

The entropy of this canonical suspension flow is equal to |A| — 1 where |A| is the
number of coordinates in the projective vector of the map.

Remark. In this article, we will only refer to ergodicity for the projectivized map. We
will not address the question of ergodicity for the homogeneous map as studied in [CN13].
Hence when talking about the ergodic measure of a MCF we will always imply an ergodic
measure for its projectivized map.

Fractal set associated to a subgraph Let F' = (VF7 EF) be a subgraph of a win-lose
induction base graph G. Define

H(F,G) = ] {o} x| |J MA

veVFE ecEY



and
A>(F,G) = (T "H(F,G)

neN

the set of parameters in the simplices for which the win-lose induction remains in the
subgraph F'.

In the graphs associated to multidimensional continued fraction algorithms that we
compute in this articles, all vertices will have multiple outgoing edges. Nevertheless, for
subgraphs F' associated to fractal sets, some vertices with a unique outgoing edge will
appear. From a dynamical perspective, such vertices can be skipped in the orbit of a
win-lose induction until we meet a branching verter, i.e. a vertex with several outgoing
edges. A path in F' for which the start and end vertices, and only them two, are branching
vertices is called a branch path. We label such a path by the label of its first edge.

And we have a generalization of the non-degenerating property to this setting.

Definition 1.2. Consider a graph G defining a win-lose induction and F a strongly
connected subgraph such that the removed edges from G are going out of a vertex with only
one outgoing edge in F. We say that F is an admissible subgraph if for any 0 C L C A
and every branch path v contained in a strongly connected component ¢ of Fr, starting
at a vertex v, one of these properties is true.

1. There exists a path within F starting at a vertex of v and leaving € such that each
edge based at a branch vertex is labeled in L.

2. All edges in v are labeled by letters not in L.

3. The branch path v is labeled by o € L and L NI(EF) = {a}. Moreover, for every
edge of F' in ~y labeled in L, the removed edges going out of its starting vertices are
labeled in [(EX)\ {a}.

In the case of Rauzy gasket, it will be necessary to factor a piece of path before the
branching vertex and to define a different factorization for each degenerate subgraph,
depending on the set £. We thus introduce the last and more general non-degenerating
property for this particular application.

Assume that, for all ) C £ C A, we are given ‘N/[;, a subset of vertices of G, such that
each path 7 in Gz between two of these vertices can be uniquely decomposed as a finite
concatenation 7y ...y, where each ~; is a path with only its start and end vertices in V.
Moreover, the paths 7; visit at most one (excluding its ending vertex) branching vertex
which has an outgoing edge labeled in L.

Such paths 7; appearing in the decomposition are called L-factor paths. We denote
by E* their set and EX the subset of paths starting at vertex v.

Notice that E~ is the set of paths in G between vertices in ‘75 along which no letter
in £ wins against a letter not in L.

Remark. The branch paths are a particular case of factor path where ‘75 is given by the
set of branching vertices.

10



Definition 1.3. Consider a graph G defining a win-lose induction and F a strongly
connected subgraph such that the removed edges from G are going out of a vertexr with
only one outgoing edge in F'. We say that F' has an admissible factorization if for any
DS LC A there exists a subset of vertices Vo C'V as above such that for every L-factor
path v € (EF)E in a strongly connected component € of Fr one of the properties and

[3 in Definition s true or

3. There is an edge in vy labeled o € L and starting at a branching vertex v € VF such
that LN I(EF) = {a}. Moreover, for every edges in ~ labeled in L, the removed
edges going out of its starting vertices are labeled in [(EL)\ {a}.

The following theorem was proved in Section 2.2.4 of [Fou25).

Theorem B. If F' is an admissible subgraph — or a subgraph with an admissible fac-
torization — of a graph G defining a win-lose induction labeled on A then the Hausdorff
dimension of the associated fractal set is strictly smaller than the dimension of its ambiant
space

dimpy A®(F,G) < |A| — 1.

More precisely,
dimy A®(F,G) < |A] — 1 — W’

where ko < |A| is the entropy of the canonical suspension flow of the induction.

Other strong ergodic results are proved in [Fou25| for the first return map of a win-
lose algorithms to a compactly supported subsimplex and its associated suspension flow
and flow. Namely, an exponential mixing property, a Central Limit Theorem and a
construction of the measure of maximal entropy as a limit of sum of Dirac measures
on periodic orbits. We refer the reader to sections 3.3.1 and 3.5 in [Fou25] for precise
statements.

1.2 Induced n-path graph

A multiplicative version of continued fraction algorithms is often considered, where we
iterate the additive algorithm as long as the definition domain (or the vertex in our
description) does not change. The quintessential example for this is Gauss algorithm
which is a multiplicative version of the Euclide algorithm applied until the order of the
two coordinates changes.

In order to describe such multiplicative algorithms as the first return map of a win-lose
induction, one needs to define a cover of the graph of the additive algorithm which keeps
track of the previous vertex in a path. That is a motivation for the following definition.

Consider a win-lose induction on a base graph G = (V, E) and a subset of vertices
V5, corresponding to the domains of definition for the algorithm. We sometime call the
vertices in V, state vertices. Assume any loop in the graph must contain a vertex in V'\ V,
thus every path eventually goes through a vertex in V, after a bounded number of steps.

For n € N*| denote by G™ = (V", E™) the induced n-path graph of G, which keeps
track of the n last visited vertices in V, defined as follows.

11



e /" is the set of finite paths in G that start at a vertex in V, and visit exactly n+ 1
vertices in V,. Any path in V" can be decomposed as 7 . ..v,7f, where:

— Forall 1 <17 < n, ~; is a non-empty path in which only the starting and ending
vertices are in V.

— 77 is a path, possibly empty, in which only the starting vertex is in V5.
The no loop condition for the induced graph on V' \ V, implies that V™ is finite.

e There is an edge from v = y1 ... 7,77 to 7' =71 ...7,7} if and only if there exists
an edge e in F such that either:

— ve=+/, or
= V2. YnYfE =1 .-V and 7} is empty.
In the second case, we have o =71, ..., Yo = V,_1, and yre = 7}.

e The labeling | : E™ — A assigns to each edge between v and v/ the label of the last
edge of the path v/. Thus, G™ is also labeled by A.

Remark 1.4. When studying continued fractions, a natural fractal set arises from the
parameters whose expansion is bounded by a given integer n. This corresponds to paths in
G™ that do not loop on a vertex of the form v =y17y1...7v1. The fractal set is defined by
the subgraph F™, where we remove, for every such vertex (where 1 can be decomposed as
Y1 = 7yse, with e being the last edge of the path), the edge between vy ...y1vs and y1 ... 71.

Let m, : G™ — G be a graph homomorphism given by:
e A map (m,)v : V" — V which associates to a path in V" its ending vertex,

e A map (m,)g : E™ — FE which associates to an edge in G™ from v to v/ the last
edge of the path v/.

For simplicity in the notation we denote both maps by 7, where there is no ambiguity.
Both maps are surjective and for every vertex in v € V" there is a bijection, with matching
labels, between outgoing (resp. ingoing) edges of v in G™ and outgoing (resp. ingoing)
edges of (m,)(v). We say that G™ is a covering graph of G. It implies in particular the
following key property.

Property. Any path v in G starting at v € V' can be lifted to a path v in G™ starting
from any point in 7, t(v) and such that m, () = 7.

For a vertex v € V, denote by %, the strongly connected component of v in G formed
by vertices v in V such that there is a path from v to v' and from v’ to v as well as the
edges between them. We define similarly the strongly connected components of vertices
in V™. For any v in V", m,(%¢,) C €y, ) and the labels of outgoing edges of v in %, are
the same as for 7,(v) in €, ().

Lemma 1.5. If G is non-degenerating then so is G™ for all n € N*.

12



Proof. Let us start by showing strong connectivity of G™. Let v and v/ be two vertices
of G™. By construction, v’ corresponds to a path 7 in G starting at a vertex denoted by
v € V. By strong connectivity of G, there exists a path - from m,(v) to v. Then by
definition, the path ~y, - v lifts to a path in G™ from v to v/'.

Let £ be a non-trivial subset of the alphabet A and G’} the corresponding degenerating
subgraph of G™. Consider a strongly connected component ¢ of this subgraph. A vertex
v in € corresponds to a path from a vertex v to a vertex v = m,(v) in G. If it satisfies
[{(Ey) N L| <1 so does v since their outgoing edges have the same labels. If there exists
a path in G from v’ labeled in £ and leaving %, this path can be lifted to a path in G™
starting at v and as 7, (%) C 6, is must leave €. O

2 Two full-image examples

Let @ : R} — R’ be a map associated with a MCF algorithm, where ® is linear on each
tile of a partition of R’} into subcones Dy, ..., Dy. We begin by computing the associ-
ated win-lose induction for two classical examples, both of which satisfy the simplifying
condition that for all i € {1,...,k}, ®(D;) = R%}.

2.1 Fully subtractive algorithms

The fully subtractive algorithm in dimension 3 can be described by the map, defined at
almost every point by

b (21,22,73) € Ri — (27, 7h,x%) € Ri,
where if {7, 7, k} = {1,2,3} and x; > x; > zx,

/ / /
T, =T, — Tk, T;=2Tj— Tk, Ty =Tk

This map corresponds to a step for the win-lose induction in the graph with one vertex
and three edges of distinct labels, represented below.

This construction generalizes to fully subtractive algorithms in dimensions n > 3 by
considering a single vertex with n loops, each labeled by a different letter.

None of these algorithms satisfy the non-degenerating property. They correspond to
the stable subgraphs phenomenon described in Section 2.2.1 of [Fou25|], where almost
every orbit eventually becomes trapped in a degenerate subgraph, preventing the pro-
jectivized map from being ergodic. One coordinate remains significantly larger than the
other two, which decrease rapidly under the application of a continued fraction algorithm.
A similar behaviour appears for the 3-dimensional Poincaré algorithm discussed in the
next subsection,

13



2.2 Poincaré algorithms

Poincaré algorithm has been introduced by Poincaré as a generalization of the continued
fraction algorithm and was later studied and generalized in [Nog95|]. It can be described
by the map

@ (21,22,23) € RS — (2, 2, 2%) € RY,

where if {7, 7, k} = {1,2,3} and x; > x; > xx,

Tp =X — x5, Tp =T — T, Ty = Tp.

This map corresponds to the first return map of the win-lose induction represented
on Figure |4| to the white node (where all white nodes are identified). The first step is
determining which coordinate is the smallest of the three and subtracting it to the other
two. The second step is comparing the two initially largest coordinates and subtracting
the smallest to the largest. This is precisely describing Poincaré algorithm.

e}

Figure 4: Poincaré algorithm as a win-lose induction

The win-lose induction induced on the subgraph Gy 2y, where G is the graph depicted
in Figure {4} is a perturbed Euclidean algorithm as studied in Section 2.2.1 of [Fou25].
Similar to fully subtractive algorithms, almost every orbit eventually becomes trapped in
such a subgraph. This phenomenon which was observed by Nogueira [Nog95] 30 years
ago with some surprise from the community.

For the higher-dimensional Poincaré algorithm, this tree graph construction general-
izes to dimension n by starting with a vertex having n outgoing edges labeled by distinct
letters. We proceed iteratively. For each edge pointing to a leaf of the tree, consider
the list of every other edges going out of its start vertex and add them as the outgoing
vertices of its end vertex. When the leaves has only edge point to them, we stop and
identify them with the root.

The cases of dimensions n > 4 are the only classical examples to our knowledge for
which the non-degenerating property is not satisfied but does not have obvious stable
subgraphs. Weather the projectivized maps for these algorithms are ergodic or not is still
open (ergodicity is conjectured by Nogueira for even n).

14



3 Other examples

Let now ® : R} — R% be a map associated to a MCF algorithm which does not neces-
sarily have full image. Assume there exists a partition of R’} by subcones Dy, ..., Dy,
called domain sets, such that for each i € {1,...,k}, ® restricted to D; is a linear map.
We describe a process to reduce to the previous case when for each i € {1,...,k}, ®(D;)
is the union of domain sets.

Assume that, for all ¢ € {1,...,k}, there exists a matrix II; € GL(d 4+ 1,R) such that
ILR"Y = D;. These matrices induce a bijection between R’ x {1,...,k} and |_|f:1 D;
defined almost everywhere. Let ¢ be the inclusion map from |_|f:1 D; to R and 7 be
defined by the following commutative diagram. The map 7 can be projectivized by
identifying positive lines in the cone, it induces a bijection p : A x {1,...,k} = A.

k
R x {1,....k} —— || D;

RY
We define an induced map ® on R x {1,...,k} by
(i) = (I (I - 2), )
when II; -z € D;. This is well defined almost everywhere since subcones D; partition R} .

By construction, we have mo® = ®ox and the image sets of ® are full cones R% x {j}.
Our goal is then to construct as in the previous section a win-lose induction graph for
which a first return map to a given set of vertices of the win-lose induction map is con-
jugated to ®. The semi-conjugated map ® will then share the same ergodic properties.

Let us consider a graph which vertices are labeled by the set {1,...,k} and such that
there is an edge from vertex k to vertex [ if and only if D; is a subset of ®(Dy). This
graph is called the combinatoric graph of domain sets.

On can think of the map ® as acting on this graph similarly to a win-lose induction.
At a given vertex, it splits each simplex it into subsimplices, corresponding to outgoing
edges, and maps each part into the whole simplex corresponding to the end vertex of that
edge via a projective linear transformation.

For each vertex, we then look for description of the splitting as a win-lose induction
on a tree. The root simplex is split along its partition into domains D;, and the edges
leading to the leaves are connected to the corresponding image simplices as determined
by the combinatoric graph.

One might argue that the splitting of simplices alone is insufficient information, as
the map acts as a projective linear transformation on each domain. However, in the
cases we are considering, the inverse branches of ® are projective linear maps defined by
non-negative integer matrices in SL(d + 1,7Z).
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The following proposition demonstrates that, in these cases, the win-lose induction we
have defined is conjugate, up to a permutation of the extremal points of the simplices, to
the map .

Proposition 3.1. If two non-negative matrices in SL(d+ 1,7Z) have the same projective
action on the extremal points of A, then the matrices are equal.

Proof. Let vy1,...,v4+1 be the vectors defining the extremal points of A. Suppose the
first matrix maps these vectors to wy, ..., wqy1-

By assumption, the second matrix maps the same vectors to ajwy,...,xgr1Wa41,
where «1,...,a441 are non-negative scalars. Since both matrices are in SL(d + 1,Z)
and have determinant 1, we also have the condition HZ; ar = 1. Which implies that
041:"':Old+1:1. O

3.1 Brun algorithms

Dimension 3 The Brun algorithm, introduced by Brun in 1957, is described in dimen-
sion 3 by the map @ : (21,22, 23) € R} — (2}, 2}, 2%) € R3 where, if {7, j, k} = {1,2,3}
and x; > x; > Ty,
Tp=xy - xy, T = x5, T = T
The domains of definition for this map are given by the order of coordinates by size:
we label them by ijk when z; > z; > x.

0,0,1

AN

A A AL

(a) Projective image of D123 (b) All image sets, where I;;i, = ®(D;jk)

(1,0,0) (0,1,0

Matrices for domains sets are defined as follows.

1 0 0 1 1 0 1 1 1
Ms=|1 1 0], H23=1]0 1 0], Ig1={(0 1 1],
1 1 1 1 1 1 0 0 1
1 0 0 1 1 1 1 0 1
M= (1 1 1], Tan=[0 1 0], Tap=[1 1 1
1 0 1 0 1 1 0 0 1

The associated combinatoric graph for this MCF, as introduced at the head of this
section, is represented in Figure [f] The states in dashed circles are identified with the
states of same label.

We associate to II125(D123) a tree inducing the same splitting. By symmetry we define
a graph in Figure |8] where the dashed arrow on left and right are identified.
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123}—>Q 312 \(123)
\ 1321\%% L 132 \/1

Figure 6: Combinatoric graph of Brun algorithm domain sets

Bt
3
1 1[
: : ) ()
(a) Partition of TT 5 (123) (b) Corresponding win-lose tree
3 1 2 3
LR ) 123 @ 312 g - - =S >
o 302 1\g\/)’3 2 (1
\ S 2 . 3 . 1o
RS Ny 3 [ ) 1 () 2 e S R A
3 N2 1H3 2( J1 T3
TS (132 21 73|} S s
1 3 2 \3/ 3 5 1

Figure 8: Brun algorithm as a win-lose induction

Proposition 3.2. Let O, be the first return map of the win-lose induction on the graph
i Figure @ to the white circle vertices, then we have wo ©, = ® o .

Remark 3.3. By symmetry, we can define the same map ©, as a win-lose induction on
a graph composed of only 9 vertices. Indeed each top black vertex has its vertex labeled
and pointing to a vertex exactly as for the black vertex at its bottom right. Thus we can
identify these pairs of black vertices to obtain a smaller graph (represented in introduction
of [Fou23|]) defining the same accelerated algorithm.

We now check the non-degenerating property. In Gy; oy the only non-trivial strongly
connected components are two loops around 312 and 321 which are clearly non-degenerating.
The same is true for any two letters and implies the following proposition.

Proposition 3.4. The graph associated to Brun algorithm in dimension 3 is non-degenerating.
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In particular by Theorem [A] we obtain an alternative proof of the following result as
well as the fact that it induces the unique measure of maximal entropy for the canonical
suspension flow.

Theorem ([Sch79], [Sch9l]). The Brun algorithm in dimension 3 admits an invariant
ergodic measure equivalent to Lebesgue measure.

Higher dimensions This construction can be generalized to all dimensions.
For any n > 2, the Brun algorithm is defined by the map

D (21,...,2,) €RY — (27,...,2;,) € RY,

where for o € 6,, such that z,, > --- > x,, we have

/ p—
Ty = Loy — Loy

/

v, = To,; forall o > 2.

The domains of definition are here labeled by permutations in &,, and will be correspond-
ingly denoted by D,. They are sent projectively on A by the following identification

Yo, = Loy Yoru_1 = Top_1 ~Lops -+ 5 Yoo = Loy — Loy (1)

The corresponding matrix defines IT; 1.

For any permutation o € &,,, the image set ®(D,) is defined by the inequalities

!/ / 3 3 !/
x,, > -+ > x, . In other words, the order of z,,,...,7,, is preserved, while x/ can

o2 _
occupy any position. Thus ®(D,) = J;_, Dy.(1..1)-
In the corresponding combinatoric graph, there are edges from domain vertices o to

allo-(1...k) for 1 <k <mn.

The splitting of IT;1 D, can then be described by the following process, corresponding
to the tree in Figure [9]

Start by checking whether y,, = 25, — %5, is smaller than y,, = 2., .
— If it is, ® maps this part of the domain to Dg.(1...p)-

— If not, we send the other half of the simplex to the whole simplex by considering
Y, = Yo — Yo, - Now check whether y, = 2, —2,, — 2., is smaller than y, , =
xan,l — T

— If it is, this part is mapped to D,.(1...(n-1))-

— If not, consider y, =y, — ¥, = Yo, — Yo,_, and continue ...

Proposition 3.5. Consider the win-lose induction defined by the combinatorics graph
and the win-lose trees described in Figure[9 Let ©, be its first return map to vertices
corresponding to image sets. Then we have 10O, = P oT.
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01 01 01

o-(1l...n) o-(1...(n—1)) o-(123) o-(12)

Figure 9: Win-lose tree between domain sets for Brun algorithm

Proposition 3.6. The graph associated with the Brun algorithm in all dimensions s
non-degenerating.

Proof. Let G denote the corresponding graph which is clearly strongly connected. Notice
that when starting from a vertex corresponding to permutation o € &,,, the accelerated
win-lose induction ©, moves to another domain set associated with a permutation o’.
This new permutation ¢’ is obtained from ¢ by inserting o; in front of the last winning
label.

Let us consider £ a nontrivial subset of A = {1,...,n}. In the degenerate subgraph
G, the accelerated induction moves from one permutation to another, where the following
quantity does not decrease

M(o, L) :=max{0<i<n|o(ln—i+1,n]) C L}
For a given permutation o, consider the subgraph of the tree in Figure [J] contained G .
e If o1 ¢ L, there are no vertices with more than one edge labeled in L.

e If oy € L, the subgraph contains a path composed of edges labeled by 0, 0p-1, ..., 0n—i+1
in £, where | = M (o, L).

— If a vertex is in this path, consider the path labeled in £ going to the end vertex
of o,—1+1 and add vertex oq. It goes to the vertex labeled by o+ (1...(n —1)).
By definition, oy, ¢ £, 80 M(c-(1...(n—1)),L) > I. Therefore, this path is
labeled in £ and exits the strongly connected component.

— If a vertex is not contained in this path and is not a vertex corresponding to a
permutation then its strongly connected component must be trivial.

O

This implies an alternative proof of another of Schweiger’s theorems.

Theorem ([Sch00]). The (sorted) Brun algorithm in all dimensions admits an invariant
ergodic measure equivalent to Lebesgue measure.

A sorted algorithm corresponds to the map @, restricted to vectors with ordered
coordinates, followed by a permutation that reorders the coordinates after the map is
applied. This theorem is proved for a sorted version of Brun algorithm and is implied in
our alternative proof by a stronger result on the unsorted algorithm.

Theorem 3.7. Brun algorithms in all dimensions admit an invariant ergodic measure
equivalent to Lebesque measure which induces the unique measure of maximal entropy of
its canonical suspension flow.
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Multiplicative version The Brun algorithm is often studied in the literature in its
multiplicative version, where one iterates the previous map until the ordering of coordi-
nates changes.

For any n > 2, the Brun multiplicative algorithm is defined by the map
S(x1,...,xn) €ERY = (27,...,2;,) € R

where, for o € &,, such that z,, > --- > x,,_, we have

¥ =x5 —N- -z, with N= {UIJ,

o1 0_2

/

T

o, = To, for all i > 2.

The first return map induced by the win-lose induction on the 1-path cover of the graph
G' to the vertices not corresponding to loops in the combinatoric graph is conjugated to
S with the same projection maps .

3.2 Jacobi-Perron and Skew-products

Classically, the Jacobi-Perron algorithm is defined for n > 3 as the map on [0, 1]" 1,

i ({25 {2

Whereas the skew-product algorithm (often called Ostrowski algorithm for n = 3) is
defined for n > 3 as the map on [0, 1]" 1,

i ({315} {52

If we identify the projectivized space R™ with R®~' by normalizing the last coordi-
nate, they correspond respectively to the following linear projective maps, defined on the
subcone where z,, > z; for all 1 <i < n,

Flar: iany:1]) = {1— UlJ 1w — Eme: et - mllJm;xl]

They can be interpreted as the projectivization of the linear map that subtracts z; from
every other coordinate a maximal number of times and then permutes the coordinates
according to the cycles (12 ... n) and (1n) respectively.

We prefer considering the map on an n-cover and a 2-cover where we do not reorder
the coordinates but keep track of the ordering in another variable € in Z/nZ and Z/2Z
respectively. Notice that the ergodic results we prove on such covers also apply to the
map on the base.

As in the case of Brun algorithm, notice that, for £ > 1, we compute the tree graph
for some more general elementary operations on ordered vectors.
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Proposition 3.8. The win-lose induction defined by the following tree is conjugated, by
the projection map defined in Equation , to the map subtracting the oy-th coordinate
from the or_1-th coordinate of a vector ordered as Ty, > -+ > Ty, .

On On—1 Okt2 Okt1 ok @
g [ ) ... [ ] [ ]

o-(k—=1...n) o-(k—1...(n—1)) o-(k—1kk+1) o-(k—1k)

Assume we want to subtract from every other larger coordinate oy, for some k > 1.

We start by subtracting it from its next largest coordinate oj_;. If the order is
unchanged, we continue the process. If the order changes, then coordinate oj becomes
coordinate o}, in the new ordering. We keep track of this coordinate by adding an index
to the vertices of our graph, which is then labeled by 0 € &,, and k € {1,...,n}. When
k =1, the coordinate cannot be subtracted from others anymore and we are done.

We can then apply the permutation to the coordinates. The coordinates which we
subtract is given by (12 ... n)¢ -1 for the Jacobi-Perron algorithm and (1n)¢ -1 for the
skew-product algorithm. The corresponding tree between domain vertices are represented

in Figure [I0]

On On—1 Ofk+2 Ok+1 Ok

Ok—1 Ok—1 Ok—1

o-(k—=1...(n—1)), c-(k—1kk+1), o-(k—1k),
k'—l, k—l, k_la
€ € € €

Figure 10: Detail of the graph for k£ > 1.

o o
= o7t (12...n)FL 1 = ol (In)*t 1
e+1 e+1
(a) Identification for k = 1 in Jacobi-Perron. (b) Identification for k = 1 in skew-product.

Notice that in this tree, oy and oy are preserved. And after the identifications
(resp. [L1b) where we denote by o', k', ¢’ the new parameters for the leaf vertex after
identification, ¢} = o} and o}, = (1 ... n)¢ -1 (resp. (1n)c -1).
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We then define the graph G on the following set of domain vertices connected by the
previous tree, respectively

Vo ={(0,k,e) €6, x{2,...,n} xZ/nZ|oy=(1...n) " -landop=(1...n) 1}
and

Vo ={(0,k,e) €6, x{1,...,n} xZ/2Z | 01 = (1n)* " -1and o}, = (1n)*- 1}.
In both cases, we define the projection

' R} x Vo — {z €RY} |2, > a; forall 1 <i<n}
(z,(0,k,€)) — (1 ...n)¢ T, (x) (resp. (1n)¢ T, (z))"

Where 11, is the linear projection map defined in Equation for each ordering 0 € G,,.
Let p be the induced projection on the projectivized space by w. The image of p is the
definition domain of F.

The algorithms are both iterations of these win-lose algorithms until € changes. To
see them as a first return map, let us consider G* = (V'1, E') the 1-path graph associated
to V. Recall that there is a projection 7 : G — G.

Let W be the subset of vertices in V! associated to a path 717f where v1 goes from
(0,k,€) to (1,t,0) in V! and € # §. Notice that necessarily, § = e +1, k = 2, 7, =
(1...n)°-land 7 =0y =(1...0) 1.

Proposition 3.9. Consider the win-lose induction defined by the graph G'. Let O, be
its first return map to vertices in W and T, the induced projectivized map. Then we have
(pom)oT,=Fo(pom).

Proposition 3.10. The win-lose graphs in both cases are non-degenerating.

Proof. By Lemma [L.5] one only needs to prove it for graphs G. As for Brun algorithm,
starting at the vertex associated with permutation o € G,, and integer k, win-lose induc-
tion goes to another vertex associated to a permutation o(k —1...1) where o; is the last
winning label. In other terms, we insert label o;_; at the last winning label position. In
G, the following quantity does not decrease

M(o, L) :=max{0<i<n|o(ln—i+1,n]) C L}

Again, consider the part of the degenerate subgraph G, in the tree described on
Figure [I0] for a permutation o and k > 2.

If o1 & L, there are no vertices with more than one edge labeled in L.

If 04,1 € L, let | = M(o,L). Notice that if K = 2 then I < n — 2 and in particular
n—1>k.

o If n—I > k, for vertices in the path composed of edges labeled by o,,, 01, ..., On—i+1
in £, consider the subpath connecting it to the end vertex and add the edge labeled
by ok—1. It points to a vertex labeled by o-(1...(n—1)). As M(o-(1...(n=10)),L) >
[ this path is labeled in £ and leaves the strongly connected component of the initial
vertex.

On the other hand, black vertices in the tree that are not contained in the previous
path, have a trivial strongly connected component.
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o If n—1[ < k, follow the path labeled by o1 which decreases k. Aslongasn—1 < k
and o;_1 € L follow the edge of—1. If the new permutation satisfies ox_1 ¢ L,
since oy, ...,0, € L, the subgraph of the tree in Figure [10| for o is a simple loop in
G, which is a strongly connected component distinct from the component of the
initial vertex. If the process stops because n — 1 > k > 2 we follow the same path
as in the previous case which decreases M (o, £). Again this is a path labeled in £
which leaves the initial strongly connected component.

We finish by proving strong connectivity of G for Jacobi-Perron case, the proof is
similar for skew-products. First, notice that for 0,0’ € &,, and € € Z/nZ, there exists a
path in the tree from (o, n,¢€) to (o/,1,€) if and only if o] = 0,,. Or more generally, there
exists a path in the tree from (o, k,¢€) to (0/,1,¢€) if and only if o] = o}, and the relative
order of oy, 0k41,-..,0, 18 preserved in ¢’. This is simply given by an insertion sorting
algorithm. In particular, there is a path from any (o,n,¢) € V; to all (¢/,n,€') € Vs.

Let (0,k,€) € Vo, with k < n and [ such that o; = (1 ... n)" - 1 the order of the
letter which will be subtracted next. Recall that o, = (1...n)¢- 1, then [ # k.

elfi>kleto'=0c-(1...k) Landl' =1.
elfi<kletoc’=0c-(l...n)-(1...k—1)""and I' =n.

In both cases, 0] = o} and oy, ..., 0, preserve their relative order in ¢’. So there is a
path from (o, k, €) to (0/,1’,e+1) where I’ > k. Hence, there exists 0’ € &,, and €’ € Z/nZ
such that there is a path in G between (o, k,€) and (o', n,¢€).

Let (7,t,9) in V; there exists a path from (o, k, €) to some vertex (o’,n,€'). Moreover,
let us define 7/ =7-(k...n)"t-(k+1...n)" ...(n—1n)"1. Then 7/, = 7, thus there
is a path from (7/,n,d) to (7,k,d). And we have seen that there is a path from (o/,n,€)
to (7/,n,9). O

3.3 Bounded coefficients Fractal sets

There is a rich literature on the set of real numbers with bounded continued fractions
and its generalization to multidimensional continued fractions (see for instance [JPO1] or
[BL23] on Ostrowski algorithm). We explain in the following how such fractal sets can
be described in the framework of this article and satisfy non-degenerating property. This
implies in particular bounds on their Hausdorff dimension which can be computed numer-
ically. We state a general consequence on these fractal sets first for Brun multiplicative
algorithms then for Jacobi-Perron and Skew-product algorithms.

Theorem 3.11. In multiplicative Brun, Jacobi-Perron and Skew-product algorithms the
following holds. For all N > 0 the Hausdorff dimension of the set of parameters which
integer coding is bounded by N 1is strictly smaller than the dimension of the ambient space.

As noticed in Remark the fractal set of numbers which expansion is bounded by
N can be described using the subgraph FV of GV, where we do not loop on vertices
corresponding to a permutation more than N — 1 times.

Namely, for the three cases we consider, if a vertex in GV corresponds to a path
1 ...71 from a domain vertex associated to a permutation o, we remove the last edge of
the path looping on this vertex. This is represented on Figure and Figure where
the edges are labeled by the permutation corresponding to there image by 7x.
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On, On—1 04 03 \Q/ @
o Y Y Y

g1 g1 g1

o-(1...n) o-(1...(n—=1)) o-(123) o-(12)

Figure 12: Removed edge in the tree corresponding to a path of shape v; ...~ in FN for
Brun.

il ot Tht2 Tk ./ @
o cee ° °

Ok— Ok — Ok —
k1 k—1 k—1 k—1

c-(k—=1...n) o-(k—1...(n—1)) o-(k—1kk+1) o-(k—1k)

Figure 13: Removed edge in the tree corresponding to a path of shape 7; ...~ in FN for
Jacobi-Perron and Skew-products.

Proposition 3.12. The subgraphs FY are admissible.
By Theorem [B] this implies in particular Theorem

Proof. As in Proposition [3.6 and Proposition [3.10] if we take F, the induction on fibers
of vertices corresponding to a permutation o does not decrease the quantity M (o, L) :=
max{0 <i<n|o(ln—i+1,n]) C L}. Let us prove the proposition for Jacobi-Perron,
the other cases are closely similar.

If o;,_1 ¢ L then for all edges except for the last right bullet vertex, we clearly have
either Property [2] or [3| depending on whether the horizontal edge is in £ or not. For that
last vertex, if o), € £ then along the branch path labeled by o1 and o;_; the letter oy
wins against o;_1 which is not in £ thus the edge is not in Fr. If o ¢ L, the action
of the second edge of the path does not change coordinates in £, hence the branch path
satisfies Property [3]

If ox_1 € L, we have constructed in the proof of the non-degenerating property in
Proposition [3.10| a path labeled in £ which leaves the strongly connected component &
starting at any vertex. Since the removed edge in F' does not appear in this path, this
prove that Property [1] holds.

Strong connectivity of G' implies it on GV and FV since we can find a path that

connects the start and end vertices of a removed edge: follow the vertical edge and go
back to the o, then loop on ¢ until the path comes to a vertex of the from ~;...7v;. O
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3.4 Selmer algorithms

Introduced by Selmer in 1961 [Sel61], the Selmer algorithm in dimension 3 is defined by
the map
@ (21,22,23) € RS — (2,2, 2%) € R,

where, for any permutation {1, j, k} = {1,2,3} and assuming z; > x; > x), we have:

/ / /
T; =T — Tk, szacj, Ty = Tk

Figure [14]illustrates the action of the Selmer algorithm on its definition domains. Unlike
the Brun algorithm, the image sets here are not unions of domain sets. This difference
arises from the fact that the subcone D, defined by the condition z; < x; + x;, for all
{i,7,k} = {1,2,3}, is an invariant subset of this map.

(0,0,1)

N

LN 7 LN

(1,0,0) (0,1,0)

Figure 14: Action on definition domains

The Selmer algorithm does not alter the order of coordinates in the region R’} \ D,
implying that every point in this complementary set eventually maps to D after a finite
number of iterations. As a result, we can restrict our analysis to the map ®p.

Restricted to D, the algorithm has a straightforward description. Assume that max(za,z3) <
x1 < a9 + x3, then:

(11,29, 73) = (#1 — 3,2, 23) if 2y >3 and zy > max(zy — 23, 23)
1,242,T3) = (:E1 _ z2,x2,x3) if 3 > x9 and x3 > maX(IE1 - 172,2E2)

Other cases are defined similarly, by conjugating the map with a permutation of coordi-
nates to reduce to the above cases.

In Figure we represent the projective action of the restriction of the Selmer al-
gorithm on D. Notice that the cone D is the convex hull of positive rays generated by
vectors v1 = (0,1,1), v = (1,0,1) and v3 = (0, 1,1). There are only 3 different image sets
1., Iy, I. described in the right part of the figure and they partition D. Thus we choose
to describe the combinatoric graph for these sets, reducing the number of vertices to 3.

In Figure we depict the projective action of the Selmer algorithm restricted to D.
Note that the cone D is the convex hull of the positive rays generated by the vectors
v = (0,1,1), v2 = (1,0,1), and vz = (1,1,0). There are only three distinct image sets,
I, Iy, I., as shown on the right side of the figure, and they partition D. To simplify, we
describe the combinatoric graph for these sets, reducing the number of vertices to three.
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(1,0,1) (0,1,1)

Figure 15: Projective action on D and image sets

The image sets are the projections of the positive cone R under the following matri-
ces:

111 01 1 01 1
M,=(1 0 1|, m=|1 1 1|, =101
110 110 111

The corresponding win-lose induction is given by the graph on Figure

3

Figure 16: Selmer algorithm as a win-lose induction

Proposition 3.13. For © the win-lose induction defined on Fz'gure mo® =®pom.

Let us consider the generalization of this algorithm for n > 3,

P (21,...,2n) ERY — (27,...,2),),

rYn

where if o € &,, is such that z,, > -+ > x,,, we define

/o
Ty = Loy — 2o,

!

v, = To, forall i > 2.

Similarly to the case of dimension 3, there is a stable subsimplex D defined such that for
all 0 € 6, if z,, > -+ > 5, then z,, <z, , +2,, . On the complement of D, the
map preserves the fact that x,, is the smallest coordinate. Thus, every orbit enters D in
finite time, reducing the study to the map ®|p.
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As for Brun algorithms, the domains of definition inside D are labeled by o € &,
and will be denoted by D,. The image set ®(D,) C D is the set of points satisfying

/

/ ) / . p . -
Ty, > > 12, and x, <wx, . The coordinate x;, can either occupy position n — 1

or n, implying:

(I)(DU) = D(T-(l (n—1)) U Do’-(l...n)~

Thus, the corresponding combinatoric graph has edges pointing from o too - (1...(n — 1))
ando-(1...n).

For 0 € &, let us denote by

vl =11...101...1,

oy
the vector which has value 1 at all coordinates except o; at which it is 0. Such a vector
is an extremal ray of the cone D and is fixed by ®.

For 1 <k <n —2, let us define the vector w(’j defined for all 1 <17 < n by

wk(i): 2 if i=01,...,0%
o 1 otherwise.

Let ¢ be the vector with all coordinates equal to 1. The set D, is the convex hull of rays
generated by wl,...,w?72 9" and c, as there are d extremal points of the convex set,

and D, is defined by d inequalities.

The projection map from Rf to D,, denoted Il,, is defined by its columns {Hf,}l,m’d.
These vectors as well as their image under ¢ are defined as follows:

— 1 _
IIg: =b = v, = ”Z-(li..n)
1172 =wl -
Oi4+1 . 3 1—1 _ —1 .
HZ = wﬁ, — wﬁ'““'?} =W, (1. (n-1)) for2<i<n-—2
1IZ =g Vg = U0 (ae1))

Notice that the image of b+ v? is given by w:_(f ( w2 The images of the

(n=1)) — Yo.(1..n)"
above vector satisfy the following equalities with 7 =o-(1...n)and 7’ =o-(1...(n—1)).

1G4 - I =TI
172 = I =02 = 07
g+ = Ip o =09 = I7T for2<i<n-2,
g~ — I = II7r
g +1g» — 7' =M2» = 7

Consider the projection via Il of the subcones of R’ where the coordinate correspond-
ing to o7 is respectively smaller and larger than the one corresponding to ¢,,. Hence, the
Selmer map sends these subcones to D and D, respectively.

The graph associated to Selmer algorithm is then defined in Figure
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Figure 17: Win-lose tree between domain sets for Selmer algorithm

Proposition 3.14. For © the win-lose induction defined on Figure mTo® =dpor.

Proposition 3.15. The graph associated with the Selmer algorithm restricted to D in all
dimensions is non-degenerating.

Proof. Let us denote by G the graph in Figure [I7] It is strongly connected since the
permutation group is generated by the two cycles (1...n) and (1...(n —1)).

Let £ be a non-trivial subset of A. The property that o, ¢ L is preserved when
following a path in the subgraph G.. Thus, in a strongly connected component, o, is
either always or never in L.

In a strongly connected component such that o, ¢ L, all vertices have one of its two
outgoing edges not labeled in L.

If o,, € L, it remains so in the next step unless o ¢ £. But at each step the numbers

01,...,0n_1 are shifted to the left in the permutation. Hence, in less than n steps, the
permutation will have o7 in A\ £. This produces a path labeled in £ that leaves the
strongly connected component. O

In particular, Theorem [A] provides an alternative proof of the following result.

Theorem ([M&b4], [Sch00]). Selmer algorithms in all dimensions admit an invariant
ergodic measure equivalent to Lebesgue measure.

Again this theorem was proved by these authors for sorted algorithms. It is implied
in our case by the following stronger result on unsorted algorithms.

Theorem 3.16. Selmer algorithms in all dimensions admit a unique invariant ergodic
measure equivalent to Lebesque measure which induces the unique measure of maximal
entropy of its canonical suspension flow.

3.5 Rauzy Gaskets and Arnoux-Rauzy-Poincaré

Following [AS13], we define the Rauzy gasket in arbitrary dimension n > 2. Let K =
{(z1,...,2n) €RY |25 <37, @, Vj} and the map defining Arnoux-Rauzy algorithm

P (21,...,20) ERY\K — (2,...,2,)

n

where if o € &,, is such that z,, > --- > x,,, we define

n
/ — —
Ty, = Toy To,
i=2

!

T

v, = To, forall i > 2.
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The Rauzy gasket G is the projective image in the simplex A = R’} / ~, as defined in the
first section, of the limit set
Fi= )2 "(R:\K).
n>0
Let DX be the subsets of R \ K with coordinates ordered according to permutation
o. The projection matrices II; ! are defined by

260 = Topy Zopn_1 = Top_y — Taps -+« 5 2oy = Tgy — Ty AN 25, = Ty — Tgy, =+ — To, -

Notice that the image sets are split by ®(DX) = Uss, D, as for n-dimensional Brun
algorithm. The splitting will then be similar, with an extra part of the tree to cut the
part intersecting K in D,.

We start with the same tree given in Brun algorithm and replace the ending states

by intermediate states G. At state &, in order to get DX, it remains to cut out of D,
On On—1 (o) o3 [op) "
o ° . . . o
o1 01 g1 01
o-(1l...n) o-(1...(n—1)) o-(123) o-(12)

Figure 18: Win-lose tree for Rauzy gasket connecting o to intermediate o vertices

the subset D, N K i.e. the set of points (z1,...,z,) such that x5, > -+ > 2, and
Toy < Toy + -+ 25, . Applying the change of basis on D, defined in Equation in
Section [3.1] to send the subcone to R, this reduces to equation
Yoo + + Yo, <Yoo + 2oy + -+ (n— 1)y,
= Yo, < Yoy + 2o, + -+ (0 —2)ys,.

This subsimplex can be cut out of A by the following graph, where label of the horizontal

vertices are og once, o4 twice, ...and o, n — 2 times.
S o3 o4 o4 o On Tn
0 ° . . oo °
gll o1 o1 o1 o1
X X X X X

Figure 19: Part of the win-lose tree connecting o to o vertices for Rauzy gasket

Let F' be the subgraph of the graph G defined in Figure [I8and Figure [I9] to which we
remove edges pointing to x. We denote by V; the set of vertices labeled by ¢ € &,, (and
not o). The projection matrices defined above corresponding to these vertices induce a
bijection 7 : R} x V, — R% and a projectivized one p : A x V, — A. The following
proposition relates the induced fractal set on states V, with Rauzy gasket.
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Proposition 3.17. Consider the win-lose induction defined by the subgraph F in G and
let ©, be its first return map to vertices in V,. Let us denote by AS® the set A®(F,G)N
(A x V) Then m(AP) = F, p(AP) =G and, on AL, Pom =7m006,.

For ) € L C A, one would like to factor paths in the graph until the last edge is
labeled in £. To do so, we consider G = (V'1, E') the edge graph of G where vertices V!
are given by F edges of G and two edges e and ¢’ are connected by an edge labeled « if and
only if there is an edge labeled « between their end vertex and start vertex respectively
in G. It is a particular case of 1-path graph taking all vertices as state vertices.

One can define similarly a subgraph F' from which vertices with no outgoing edges
are removed and V. vertices to which the corresponding edge points to V,. Then the
graph G, subgraph F' and set V! satisfy again the previous proposition.

We now consider 172 the set of vertices corresponding to edges labeled in £ and which
ending vertex is either a bullet between o and ¢ or a state vertex o.

Proposition 3.18. There is no loop in the graph F restricted to V! \‘N/L1

Proof. Consider a L-factor path in this restricted graph, assume it goes through a state
vertex ¢ as in Figure (which must happen after a finite number of steps). Then, it
should leave the tree without going through an edge labeled by £. In particular, o1 ¢ £
and the next permutation state o’ it goes through is such that m(o’, £) := min{0 < i <
n | o'(i) € L} is strictly smaller that m(o, £). Hence the path cannot be a loop. O

In particular, a path v in G, between two vertices of ‘N/Ll can be uniquely decomposed
as a finite concatenation 7 ...7v, where each 7; is a path with only its start and end
vertices in Vﬁl. By construction, it can meet at most one branching vertex with an
outgoing edge labeled in £ — the penultimate.

Proposition 3.19. The family of subset of vertices {\7[}]1 is an admissible factorization
of F'.

Proof. Consider the subgraph F}. As in the proof of non-degenerating property for Brun
algorithm, the accelerated induction goes from a permutation to the another and the
quantity M (o, £) := max{i > 0| o([n — i+ 1,n]) C L} does not decrease on them.

Let us consider v a L-factor path in a strongly connected component € of F.. Let o
the permutation corresponding to its starting vertex which is either o of a bullet between
o and 7.

If o1 € L, then the corresponding path is labeled in £ and increases M (o, £). It thus
leaves the strongly connected component ¥ and ~y satisfies Property [1] in Definition [L.3]

If o1 ¢ £ we show that the path satisfies Property

If the path does not go through a state vertex o', o7 is the only winning letter and is
contained in labels of edges going out of the end vertex.

If the path v goes through a state vertex o/, the label o] ¢ L is the only one that
may win against a label in £. After it arrives at state ¢, if the path visits a label in £
before o loses, of is in the outgoing labels of the penultimate vertex. It then satisfies
Property

But if the path does not visit a label £ then M (o', L) = M(o, L) must be 0. The
quantity m(c’,£) = min{l < i < n | ¢'(i) € L} is non-increasing in this component.
Hence when o/ loses, the path would leave the component, which brings a contradiction.

O
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As a consequence, Theorem [B] implies the following.

Theorem 3.20. The Rauzy gasket in any dimension n > 3 has Hausdorff dimension
strictly smaller than n — 1 and its canonical suspension flow has a unique measure of
mazximal entropy.

Arnoux—Rauzy—Poincaré The Arnoux-Rauzy-Poincaré algorithm is an algorithm in
dimension n = 3 consisting in applying the Arnoux-Rauzy algorithm on Ri \ K and the
restriction of Poincaré algorithm on K (see [BL15]). It thus acts on K as described on

-

Figure 20: Action of Poincaré algorithm on a subdomain of K

TN

We only need to make the edges pointing to the hole vertex x from ¢ point to o - (123)

as represented on Figure
(——()

o1
o (123)

Figure 21: Connection for Arnoux-Rauzy-Poincaré in dimension 3

As for Brun algorithm in dimension 3, we only need to check the non-degenerating
property for two letter subgraphs, say G 2. Here again the strongly connected compo-
nents will be two loops around 1 > 2 and 2 > 1 formed by 3 edges. Which implies,

Proposition 3.21. The graph associated to Arnouz-Rauzy-Poincaré algorithm in dimen-
ston 3 is non-degenerating.

Theorem 3.22. Arnoux-Rauzy-Poincaré algorithm admits a unique invariant ergodic
measure equivalent to Lebesque measure which induces the unique measure of maximal
entropy of its canonical suspension flow.

Observe that the generalization of this algorithm to higher dimensions will have more
complicated combinatorics, since the images induced by the edges going out of the graph
of Arnoux-Rauzy will produce new image sets. Perhaps another natural way to generalize
this algorithm in the win-lose induction point of view would be to connect all these edges
to some vertex o - (1...n). This again is a non-degenerating win-lose induction.

31



Link with Baragar constants For Rauzy gasket in dimension d, we show in this
paragraph that the constant k¢ in Theorem [B] is bounded from above by the constant
computed in [Bar98] under notation a(d+1) and used in [GMRI9] under notation S(d+2).

Let us recall notations of [GMR19], we use the numbering in this article to refer to
some results or formulas in the following paragraph. Let

n
H:=19 W1, Ynt1) GR?}H Y1 S Y2 S Syn+1,zyj =Ynt1 ¢
j=1

O := H/R, and T be the semigroup generated by 71, ...,7v, maps on ordered (n+ 1) —
tuples defined for 1 < j < n by

VW5 Yng1) = yla-~~7ij>-~-7yn+lazyi
]
As in Example 9, forgetting the n + 1-th coordinate, these matrices correspond to inverse

branches of Arnoux—Rauzy algorithm composed with a sorting permutation on coordi-
nates. They consider the following set of product of these matrices

Tr = {717 | N € Zi0,1 < j <n—1}.

In formula (4.3) they introduce for all s € R a transfer operator £, : C*(O) — C*(O)
defined for C! functions f on O and = € O by

L(f)@) =Y [Jac,(|™ " fy-a)
vETT
where we have directly made the substitution induced by Lemma 44. Theorem 39 is a
Ruelle-Perron—Frobenius theorem implying the existence of a positive real number A
which is the unique eigenvalue of this operator with the largest module. As remarked
after Proposition 43, the number s such that A; = 1 corresponds to Baragar’s constants.

We identify O with points (z1,...,2,) € A =R}/ ~ such that z1 > 29 > -+ > z,,.
Consider the action of &,, on A by permutation on the coordinates and its quotient map
0: A — A/G, ~0O. Let ®* be the accelerated Arnoux-Rauzy algorithm composed until
change of order. The images vy for v € 1T are all points y € O such that there exists
je{l,...,n—1} with ®*((§...n) - y) =. Hence they correspond to preimages for ®*
on the whole unordered simplex A and these preimages are almost surely distinct. By an
elementary computation, we have |Jac,, (7)|_% = ¢~ "®) for the roof function r defined in

[Fou25]. We associate to f the pulled back map defined on A by f:: foo. The transfer
operator can then be expressed as

LP)x)= Y e f(y).
O+ (y)==x

Let us consider the subset of Ar C A x V, which corresponding path in the graph
until the next image vertex is not a loop i.e.

Ari= | (A\A,) x {0}

oeV,
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where v, =0, - Op_1--- - 0903040405 -...0, is the path that loops on the vertex
labeled by o.

Let now ©, and O be the first return map of the win-lose induction on A x V, and
Ar respectively. ©, is also conjugated to a first return map on vertices of the 1-path
graph associated to the Arnoux-Rauzy graph.

These two maps are conjugated to ® and ®* with respect to the map p: AxV, - A
induced by the projectivization of the map 7 defined above in Section For f := fop,

Yoo e @i =n Y e f(y) = nLf)(@).

p(9)== @+ (y)==
Thus R
Y. Lo(N(@) = nLa(f)()
p(§)=x
where Ly : C(Ar) — C(Ar) is the Ruelle operator studied in [Fou25] using thermody-
namic formalism with potential function ¢ = —s - r,. Even though it is not a first return

on a subsimplex induced by a positive path, it is a uniformly expanding (Proposition 45)
first return map on vertices and all the constructions of [Fou25] using thermodynamic
formalism can be done.

Let us consider g an eigenfunction for Ly on Ar and 2 a point in that space. Permu-
tations act on these maps by o - g(&) := g(o - &). Notice that

Lo(o-g)(@)= Y. e o7 gy = > e Ng(G) = Ly(g)(o - 7).
Oo(9)=2 O, (9)=0-2

thus the action permutes with L. And we can averaging over all permutations, to show
eigenvalues of Ly are also eigenvalues of L.

As the C%-norm is dominated by the C'-norm, )\, also bounds the module of eigenval-
ues of L, extented to C(O). The eigenvalue with largest module for Ly is e7¢(=57+) and
by the inclusion of eigenvalues proved above efé(=57+) < \.. Moreover kg is the unique
value of s such that Pg(—s-r,.) = 0 (and corresponds to the entropy of the canonical
suspension flow). Hence 1 < A, and, by Proposition 43, Baragar’s constant is not smaller
than kg. As a consequence of the computations in [Bar98] and Theorem [B| we have the
following result.

Theorem 3.23. If G¢ denotes the Rauzy gasket in dimension d, we have the bounds
dimg(G?) < 1.825,
dimgy (G?) < 2.7,
dimg (G*) < 3.612

and for d going to infinity

logd

dimpr(67) <d =1+ log2-(d+1)

+ 0(d_1'58).

This strengthens and generalizes the only previous known bound proved in [AHS16]
to be dimz(G?) < 2. After the first preprints of this article, a sharper bound: 1.7415,
has been proven by Pollicott-Sewell [PS23]
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